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RESUMO 

 

Introdução: Brasil deu início recentemente ao seu Inventário Florestal Nacional (IFN) seguindo 

uma amostragem em larga escala de 1:100.000. Com isso, há uma crescente demanda em 

desagregar variáveis florestais a uma escala mais precisa, refinada. Objetivo: Com auxílio de dados 

de sensoriamento remoto, o objetivo deste trabalho foi testar dois métodos para estimar e mapear, 

a uma escala fina, componentes florestais como volume de madeira, biomassa e carbono. Métodos: 

O procedimento analítico é dividido em sete passos. Primeiro: coletar variáveis dendrométricas; 

dados de parcelas do IFN de três mesorregiões do estado do Paraná foram usados. Segundo: 

modelagem florestal; necessária para estimar variáveis ao nível da árvore, como volume de fuste, 

biomassa e carbono de árvores. Terceiro: cálculo do erro de amostragem e intervalo de confiança 

(IC) do IFN. Quarto: pré-processamento de imagens de satélite; foram usadas sete bandas do 

Landsat-8 OLI, portanto Número Digital (DN) foi transformado em reflectância da superfície 

(variável física). Quinto: classificação de imagens: classificações orientadas ao objeto foram 

efetuadas para delimitar classes de (i) florestas em estágio sucessional inicial e (ii) médio-

avançado. Sexto: modelagem a nível de pixel; dois métodos em escala fina foram testados para 

estimar variáveis florestais ao nível de pixel. O primeiro deles usa um Modelo de Reflectância da 

Superfície (MRS), que é um modelo linear que ajusta volume de madeira em função da reflectância 

de superfície de dados do Landsat-8 OLI, incluindo bandas do Vermelho, IFP, IFM1, IFM2, Brilho, 

e NDVI. O método de stepwise foi usado para selecionar as variáveis de reflectância. Componentes 

principais das variáveis selecionadas corresponderam às variáveis independentes. O segundo 

método é baseado na técnica geoestatística krigagem com regressão (KR), em que latitude e 

longitude foram as únicas variáveis independentes. O primeiro método (com MRS) foi aplicado ao 

volume florestal, biomassa e carbono. O segundo (com KR) foi aplicado ao volume florestal 

apenas. Sétimo: Volume florestal foi extrapolado a escalas ampla (sem técnicas de sensoriamento 

remoto) e fina (com tais técnicas), e então comparadas entre si. Resultados: O método com MRS 

teve um desempenho melhor que o método com KR, embora ambos forneceram, no geral, 

resultados próximos. O MRS estimou um volume médio de 123,8 m³ ha-1 e um total para a área de 

estudo de 210.961.589 m³. A KR estimou média de 115,7 m³ ha-1 e total de 203.326.674 m³, ou 

seja, 3,7% a menos que as estimativas do MRS. Em relação à biomassa florestal, o MRS estimou 

média e total de 120,1 Mg ha-1 e 217.736.862 Mg, respectivamente. Para o carbono, a média foi de 

49,2 MgC ha-1 e total de 89.272.113 MgC, correspondendo a 327.331.082 Mg de CO2 equivalente 

estocado na área de estudo. O volume total estimado por ambos métodos de escala fina enquadram-

se no IC obtido a uma escala ampla. Conclusão: Apesar do MRS e KR terem sido capazes de 

produzir, no geral, estimativas precisas do volume de madeira, o MRS representou melhor 

espacialmente o volume de madeira. O MRS também estimou acuradamente biomassa e carbono 

florestal. 

 

Palavras-chave: Volume de madeira. Biomassa e carbono. Sensoriamento remoto. Modelos 

derivados de dados de satélite. 

 

 

 



 

 

 

 

ABSTRACT 

 

Introduction: Brazil recently started its National Forest Inventory (NFI) following a broad-scale 

sampling of 1:100,000. Therewith, there is an increasing need for disaggregating forest variables 

at a more precise, finer scale. Objective: With assistance of remotely sensed data, the aim of this 

study was to test two methods for estimating and mapping, at a fine scale, forest components as 

wood volume, biomass and carbon. Methods: The analytical procedure has seven steps. First: 

collecting tree variables; NFI plot data from three meso-regions of the State of Parana were used. 

Second: forest modelling; necessary for estimating tree-level variables, as stem volume, tree 

biomass and carbon. Third: calculation of NFI’s sampling error and confidence interval (CI). 

Fourth: satellite imagery pre-processing; seven Landsat-8 OLI bands were used, therefore Digital 

Number (DN) was transformed into surface reflectance (physical variable). Fifth: imagery 

classification; object-oriented classifications were performed for delimiting classes of (i) early 

successional, and (ii) mid- to-late successional forest. Sixth: pixel-level modeling; two fine-scale 

methods for estimating forest variables at pixel-level were tested. The first of them uses a Surface 

Reflectance Model (SRM), which is a linear model that fits wood volume as function of surface 

reflectance from Landsat-8 OLI data, including Red, NIR, SWIR1, SWIR2, Brightness, and NDVI. 

The stepwise method was used to select the reflectance variables. Principal components of the 

selected variables were used as input variables. The second method is based on the regression-

kriging (RK) geostatistical technique, in which latitude and longitude were the only two input 

variables. The first method (with SRM) was applied to wood volume, biomass and carbon. The 

second one (with RK) was applied to wood volume only. Seventh: Wood volume was extrapolated 

at coarse (without remote sensing techniques) and fine (with such techniques) scales, and then 

compared with each other. Results: The SRM method had a performance better than the RK 

method, though both of them provided, in general, similar results. The SRM estimated a mean of 

123.8 m³ ha-1 and a total volume for the study area of 210,961,589 m³. The RK estimated a mean 

of 115.7 m³ ha-1 and total of 203,326,674 m³, i.e., value 3.7 % lesser than the SRM estimates. In 

relation to forest biomass, the SRM estimated a mean and total of, respectively, 120.1 Mg ha-1 and 

217,736,862 Mg. For carbon, the mean was of 49.2 MgC ha-1 and total of 89,272,113 MgC, 

corresponding to 327,331,082 Mg of CO2-equivalent stocked in the study area. The total wood 

volumes estimated by both fine-scale methods fit into the CI obtained at a coarse scale. Conclusion: 

Despite SRM and RK were capable of producing overall accurate estimates of wood volume, SRM 

better represented spatially the wood volume. SRM also estimated accurately forest biomass and 

carbon. 

 

Keywords: Wood volume. Biomass and carbon. Remote sensing. Satellite data-derived models.  

 

 

 

 

 

 



 

 

 

 

RESUMO EXPANDIDO 

 

 

1. Introdução 

 

O Inventário Florestal Nacional (IFN) brasileiro está em fases iniciais. Mapeamentos do 

estoque de madeira, biomassa e carbono, ao nível nacional e regional, aparecerão como uma das 

primeiras demandas emergentes. Nessas fases iniciais, o papel dos métodos para quantificar 

recursos florestais a escalas mais finas é de crucial importância no processamento dos dados do 

IFN. Isso requer uma desagregação de variáveis florestais de escalas amplas a escalas mais 

refinadas, principalmente para auxiliar o manejo florestal e o planejamento aos níveis regionais 

(Wilson et al., 2013). 

O conceito de desagregação aplicado aqui diz respeito ao refinamento de estimativas de 

uma escala ampla derivada de dados do IFN, o que pode ser alcançado por meio de técnicas 

baseadas em sensoriamento remoto. Com o refinamento de estimativas, variáveis florestais são 

fornecidas a uma escala tão fina quanto for a resolução espacial do sensor remoto empregado. Em 

geral, quantificar volume de madeira em escalas refinadas é importante para propósitos de 

planejamento e manejo, enquanto que quantificar biomassa e carbono acima do solo (BAS e CAS) 

desempenha um papel importante para auxiliar relatórios de emissão de gases de efeito estufa, bem 

como informar emissões e sequestro de carbono (David et al., 2017; Kim et al., 2013; Wilson et 

al., 2013). 

A maioria das técnicas refinadas para quantificar recursos florestais são baseadas em 

modelagem e dados de sensoriamento remoto, sendo aplicados tanto aos níveis nacionais, quanto 

regionais e locais (Brooks et al., 2016; Maack et al., 2016; Dube and Mutanga, 2015; Kim et al., 

2013; Lu et al., 2012; Gleason and Im, 2011; Lu, 2006; Cohen and Goward, 2004; Fazakas et al., 

1999). Modelos derivados de satélite têm sido amplamente usados na engenharia florestal e em 

aplicações ecológicas, principalmente a partir do início do acesso livre às imagens Landsat (Cohen 

and Goward, 2004).  

Dada a importância de informar a distribuição espacial de recursos florestais em escalas 

mais finas que aquela fornecida pelos dados de parcelas do IFN, neste estudo são aplicados dois 

métodos derivados de dados de satélite para quantificar e mapear volume de madeira, biomassa e 



 

 

 

 

carbono. O primeiro deles é um modelo linear múltiplo que usa dados de reflectância da superfície 

como variáveis de entrada. O segundo método é baseado em Krigagem com Regressão (KR), em 

que sua aplicação foi combinada com um modelo linear que usa latitude e longitude dos pixels 

como variáveis de entrada. Esses métodos de escala fina foram comparados entre si, bem como 

comparados em relação à estimativa a uma escala ampla, fornecida pelos dados de parcelas do IFN. 

Os objetivos gerais foram (i) mapear e (ii) desagregar variáveis florestais (volume de 

madeira, biomassa e carbono) de uma escala ampla para mais fina, usando dados de parcelas do 

IFN. Como objetivos específicos, tem-se: (i) estimar volume de madeira (por unidade de área) a 

uma escala ampla, fornecida pelos dados de parcelas de campo do IFN; (ii) estimar volume de 

madeira (por unidade de área) a uma escala ampla, com assistência de classificação de imagem; 

(iii) testar e comparar dois métodos de escala fina para estimar e mapear volume de madeira, 

empregado com assistência de dados de sensoriamento remoto e interpretação de imagem; (iv) 

comparar volume de madeira estimado tanto a escalas fina e ampla; e (v) testar um método de 

escala fina para estimar e mapear biomassa e carbono, usando dados de sensoriamento remoto e 

interpretação de imagem. 

 

2. Material e Métodos 

 

A área de estudo cobre três mesorregiões políticas do estado do Paraná: Centro-Ocidental, 

Centro-Sul e Sudeste (Fig. 5). Foram usados dados do IFN executado nessas três mesorregiões. A 

área de estudo cobre ~55.331 km² ou ~28% do estado do Paraná. Essa foi a primeira região no 

estado a ser inventariada seguindo o desenho amostral padronizado do IFN. Dados de campo foram 

coletados durante o primeiro semestre de 2013, em que 152 conglomerados foram alocados 

sistematicamente sobre essas três mesorregiões. A Fig. 5 mostra a área de estudo e a localização 

de cada conglomerado do IFN. 

 A primeira variável de interesse desta pesquisa é volume de madeira (m³ ha-1), resultante 

da soma de volume de fuste de todas espécies arbóreas observadas nos conglomerados 

parcialmente e inteiramente florestados. O volume de madeira foi modelado ao nível de árvore, 

estimado por conglomerado e, então, extrapolado às áreas não-amostradas a escalas ampla e fina. 

Estimativas em escalas finas, isto é, ao nível de pixel, dependem da aplicação de (i) modelagem 

por regressão linear em dados de sensoriamento remoto, e (ii) krigagem com regressão. Esses 



 

 

 

 

métodos de escala fina foram comparados com duas alternativas de extrapolação a uma escala 

ampla; com e sem assistência de classificação de imagens de satélite, para delimitar área florestada. 

 A segunda variável de interesse é biomassa acima do solo (BAS, Mg ha-1), resultante da 

soma da biomassa aérea dos compartimentos (fuste, galhos e folhas) de todas as espécies lenhosas 

observadas nos conglomerados florestados. A terceira variável de interesse é o estoque de carbono 

(Mg ha-1), diretamente estimado por um fator de conversão de biomassa. 

 O modelo de regressão linear foi chamado de Modelo de Reflectância da Superfície (MRS), 

visto que a variável florestal foi estimada em função da reflectância de imagens Landsat cobrindo 

a área de estudo. O método de KR é auxiliado por um modelo chamado de Modelo de Krigagem 

com Regressão (MKR), o qual estima a variável florestal em função de latitude e longitude. 

 As imagens Landsat foram classificadas com base em um algoritmo de classificação 

orientada ao objeto, em que o software eCognition foi usado nessa etapa tanto para segmentar, 

quanto para classificar as imagens. Um total de sete imagens foram suficiente para cobrir toda a 

área de estudo. 

 

3. Resultados e Discussão 

 

O método com MRS teve um desempenho melhor que o método com KR, embora ambos 

forneceram, no geral, resultados próximos. O MRS estimou um volume médio de 120,1 m³ ha-1 e 

um total para a área de estudo de 210.961.589 m³. A KR estimou média de 115,7 m³ ha-1 e total de 

203.326.674 m³, ou seja, 3,7% a menos que as estimativas do MRS. Em relação à biomassa 

florestal, o MRS estimou média e total de 120,1 Mg ha-1 e 217.736.862 Mg, respectivamente. Para 

o carbono, a média foi de 49,2 MgC ha-1 e total de 89.272.113 MgC, correspondendo a 327.331.082 

Mg de CO2 equivalente estocado na área de estudo. O volume total estimado por ambos métodos 

de escala fina enquadra-se no intervalo de confiança obtido a uma escala ampla. 

Os resultados revelaram que o método KR foi impossibilitado de estimar volume de 

madeira dos pixels com menores e maiores estoques, precisamente aqueles pixels com estoque 

menor que ~50 m³ ha-1 e maior que 210 m³ ha-1. Essa limitação tinha sido notada para o modelo de 

KR, em que o volume de madeira variou de ~50 a 150 m³ ha-1, enquanto que os volumes observados 

variaram de ~23 a 223 m³ ha-1. 



 

 

 

 

Esse fato indica que o procedimento analítico da krigagem com regressão (que adiciona 

rasters dos resíduos do volume ao volume estimado) foi limitado em corrigir as estimativas do 

volume de madeira em pixels com maiores e menores estoques. Apesar de sua pior performance, o 

RMSE fornecido pela KR enquadra-se nos resultados de pesquisas combinando dados de 

sensoriamento remoto e métodos geoestatísticos (Yadav and Nandy, 2015; Scolforo et al., 2015; 

Scolforo et al., 2016). 

 Uma das principais razões pela qual a KR tem sido menos confiável que o MRS diz respeito 

às variáveis de entrada. No MKR testado, o volume de madeira foi limitado à variação de latitude 

e longitude. Quando uma dessas variáveis não é significante, o volume torna-se então dependente 

apenas de uma variável geográfica, como ocorreu no caso desta pesquisa (apenas latitude foi 

significante a 95% de probabilidade). Portanto, o MKR ajustado neste estudo pode atingir volumes 

extremos apenas sob latitudes extremas, mas esse último é limitado ao tamanho da área. Um outro 

empecilho subjacente ao MKR é que recursos florestais podem não ser estocados em um gradiente 

contínuo em função de lat./long., o que prejudicaria a performance dos modelos baseados em 

localizações geográficas. Os MRSs, por sua vez, foram mais eficientes possivelmente porque eles 

estimam volume em função da resposta espectral da vegetação, independentemente da localização 

geográfica dos pixels (como nos MKR), sendo capazes de estimar valores inferiores e superiores.  

 Em relação aos MRS, a grande variação do volume observado ao nível de campo pode ser 

citada como uma das principais causas da perda de acuracidade. Na base de dados deste estudo, 

foram encontrados muitos conglomerados inteiramente florestados (isto é, com 40 parcelas 

classificados em uma classe de floresta) com baixo estoque de madeira, ou mesmo sem estoque 

algum. Isso ocorre porque o critério de inclusão do IFN (de Dap ≥ 10 cm) pode excluir, por 

exemplo, a maioria das árvores pertencentes a uma floresta em estágio de sucessão inicial. Se uma 

vegetação jovem como essa é comparada a uma floresta madura, elas são prováveis de ter menos 

discrepância espectral que de estoque de volume, dada suas similaridades de verde e umidade. 

 Em segundo lugar, as subunidades dos conglomerados são pequenas demais para serem 

consideradas como parcelas únicas, devido à resolução espacial de 30 m. Tal condição nos obriga 

a expandir a coleta de pixels pela área total coberta pelo conglomerado, isto é, 4 ha. Nesse caso, a 

área total é a área formada pelas distâncias entre as subunidades 1 a 3, e 2 a 4 (que é de 200 m, 

cada). Apesar dessa área total ser um tamanho de amostra razoavelmente suficiente, ela contempla 



 

 

 

 

pixels tanto de manchas florestais amostradas quanto não-amostradas, esperando que elas tenham 

estoques semelhantes.  

 Seguindo essa necessária estratégia de expansão, uma possível fonte de erro diz respeito à 

incompatibilidade entre pixels de manchas amostradas e não-amostradas. 

 

4. Conclusões e Recomendações 

 

Os dois métodos de escala fina testados forneceram estimativas próximas para o volume 

total (diferença de ~8%), porém, o MRS teve a melhor capacidade em mapear a distribuição 

espacial do volume de madeira. O MRS também forneceu mapeamentos dos estoques de biomassa 

e carbono acurados. A baixa performance do método KR em mapear espacialmente as variáveis 

estudadas é devido ao fato de as variáveis geográficas serem limitadas à área de estudo.  

Estimativas do volume total derivado do MRS e KR enquadram-se no intervalo de 

confiança obtido a uma escala ampla, indicando que a intensidade amostral do IFN produz 

confiável estimativa do volume de madeira. Mesmo com uma ampla intensidade amostral de 

1:100.000, os resultados revelam que ambos os métodos para estimar volume de madeira podem 

ser aplicados aos dados do IFN brasileiro. A extrapolação em escala ampla com auxílio de 

classificação de imagem subestima o volume total em relação ao método sem tal auxílio. Isso 

ocorre devido à menor área florestada encontrada no método com classificação de imagem.  

Como recomendações, deve-se considerar que as subunidades dos conglomerados são 

pequenas demais (para imagens de 30m de resolução espacial) para compor os pares de dados com 

os valores de reflectância dos pixels, visto que os pixels das imagens são de 900 m². Como 

alternativa, recomenda-se fusionar as imagens para reescalar os pixels para 15 m. Essa alternativa 

pode melhorar a precisão dos MRS.  

O método KR tem um grande potencial em ser usado como ferramenta para estimativas a 

nível de pixel no IFN. Outros estudos devem ser feitos testando outras variáveis além de latitude e 

longitude, como variáveis edáficas e climáticas. 

Recomenda-se o uso do software eCognition e a classificação orientada ao objeto para 

classificar imagens Landsat. Para atingir uma boa segmentação e classificação, o usuário deve 

prestar bastante atenção na escolha de parâmetros de compactação e forma dos objetos, os quais 

devem formar objetos com forma e tamanho adequados a cada estudo. 
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1. INTRODUCTION 

 

Recently, Brazil started its National Forest Inventory (NFI) following a broad-scale 

sampling suited to meet national demands. Brazil is a continental country that shelters the world’s 

richest tropical forests, but contradictorily, few of its forest resources is known, mainly due to the 

lack of a national-level forest plot database. The role of the Brazilian NFI is of special importance 

for supplying a permanent-plot system (PPS), with remeasurements of sampled plots every five 

years. The PPS is then the master key by which Brazil can produce information about its forest 

resource stocks at a given strategic level.  

Chronologically, the Federal District and the states of the South were the first ones to be 

inventoried following the NFI’s standardized methodology. Among the States of the South, Parana 

carried out its NFI in three sequential phases: the first of them was conducted during 2013 and 

composes the data source of this study. The second and third phases occurred over the 2014-2016 

period. States from other Brazilian regions have also started and completed their first measurement, 

but only the State of Santa Catarina had remeasurements concluded. 

As Brazil’s NFI is on a primary stage, national- and regional-level mappings of wood 

volume, biomass and carbon stocks will appear as some of the first emerging demands. In a longer 

perspective, future challenges will arise for disentangling forest changes detected with 

remeasurements (Goeking, 2015), fixing problems caused by lost samples, among others. In the 

initial phases, the role of the methods for quantifying forest resources at more precise scales is 

crucial for NFI data processing. This requires a disaggregation of forest variables from coarse to 

finer scales, mainly to support forest management and planning at regional level (Wilson et al., 

2013). The concept of disaggregation here applied concerns the refinement of broad-scale estimates 

derived from NFI data, which can be achieved through remote sensing-based techniques. With the 

refinement of estimates, forest variables are provided at a scale as fine as the spatial resolution 

from the remote sensor employed. In general, quantifying wood volume at refined scales is 

important for planning and management purposes, while quantifying aboveground biomass (AGB) 

and carbon plays an important role to support greenhouse-gas emission reports, as well as to inform 

carbon sequestration and emissions (David et al., 2017; Kim et al., 2013; Wilson et al., 2013). 

Most of the refined techniques for quantifying forest resources are based on modeling and 

remotely sensed data, being applied both at national, regional, as local levels (e.g., Brooks et al., 
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2016; Maack et al., 2016; Dube and Mutanga, 2015; Kim et al., 2013; Lu et al., 2012; Gleason and 

Im, 2011; Lu, 2006; Cohen and Goward, 2004; Fazakas et al., 1999). Satellite-derived models have 

been widely used in forestry and ecological applications, mainly from the onset of the free access 

to Landsat imagery (Cohen and Goward, 2004). Many authors have found strong relations between 

forest biomass and carbon with visible bands, as well as wood volume with middle infrared bands 

(Lu et al., 2004). Other variables (e.g., forest crown closure, stand height) have also been accurately 

modeled with assistance of remote sensing data (Lu et al., 2004). These satisfactory results stem 

from the good relation between forest variables and spectral information contained in satellite 

imageries, though spectral responses may considerably change in function of the studied variable. 

Hayashi et al. (2015) point out that parametric methods can extrapolate beyond the range 

of the fitting dataset, however, regression models have limitations on relating field data with 

remotely sensed data, due to its high sensitivity to influential observations, mathematical 

relationships existing among sensor data, as well as difficulty in handling several highly-correlated 

variables. In this scope, Kim et al. (2013) highlight that suitable satellite imagery data used in the 

regression analysis must be carefully selected, given the variations in forest stand conditions and 

the complex relationships between spectral reflectance values. Such conditions require cautions on 

handling the regressed variables, examination of normality of residuals, as well as co-linearity 

among input variables (Hayashi et al., 2015). 

In the forestry field, authors have employed from less to more complex analytical 

techniques combined with remote sensing (Kim et al., 2013). Among the less complex ones, linear 

regression models perhaps are the most used (Fassnacht et al., 2014) because they provide accurate 

results, besides being rapidly processed (Lu et al., 2004). On the other hand, applying techniques 

as artificial neural network (ANN) in spatializations and mappings, although they often provide a 

little more of accuracy, they depend on complex programming practices. In general, authors that 

use such techniques neither expose their underlying algorithms, nor apply them to map the studied 

variable. In addition to ANN, geostatistical techniques have been increasingly more used, such as 

ordinary kriging, cokriging, and regression kriging (RK); this last being a hybrid method involving 

linear model with kriging (Meng et al., 2009) and which often has been considered the most 

accurate alternative (Kim et al., 2013). 

Given the importance of informing the spatial distribution of forest resources at a scale finer 

than the one provided by NFI plot data, the question raised in this study was whether there is 
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difference in the forest resource quantification through satellite data-derived methods from 

different natures. The first of them uses satellite image interpretation and raw NFI data, i.e., without 

modeling the studied forest variables. Unlike, the second one employs a linear multiple model, the 

‘SRM’, which uses surface reflectance data as input variables. The second method is based on RK, 

in which its application was combined with a linear model that uses latitude and longitude of pixels 

as input variables. These methods were compared with each other, as well as compared in relation 

to the coarse-scale estimation, provided by the NFI plot data. The hypotheses of this study are: i) 

the fine-scale methods, even being from different natures, produce close estimations of the total 

stock, because their spatial resolution is the same; ii) fine- and coarse-scale methods provide 

statistically unequal results of the total stock, because their spatial resolution is not the same. 

 

1.1 OBJECTIVES 

 

1.1.1 General objective 

 

The general objectives are to (i) map and (ii) disaggregate forest variables (wood volume, 

biomass and carbon) from a coarse to a finer scale, using NFI plot data. 

 

1.1.2 Specific objectives 

 

 Estimating wood volume at a coarse scale, provided by data from NFI field plots. 

 Estimating wood volume at a coarse scale supported by image classification.  

 Testing and comparing two fine-scale methods for estimating and mapping wood volume, 

employed with assistance of remotely sensed data and image interpretation. 

 Comparing wood volume estimated both at fine and coarse scales. 

 Testing a fine-scale method of estimating and mapping forest biomass and carbon, by using 

remotely sensed data and image interpretation. 
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2. REVIEW OF LITERATURE 

 

2.1 NATIONAL FOREST INVENTORY (NFI) 

 

2.1.1 Concept and role of NFIs for forest resource assessment 

 

National Forest Inventory (NFI) is a sample-based system that provide a statistically robust 

information for reporting, capturing of spatial change across landscapes, being of high value for 

forest management, planning, and scientific purposes (Frazier et al., 2014). NFIs are carried out in 

several countries around the world aiming to obtain information about forest resource at national 

scales. The source of data of the NFIs come from ground plots allocated in forested or non-forested 

lands. NFI plots are generally sampled following a national grid designed for meeting specific 

demands of the country. Although several countries have already established their NFI program, 

Tomppo et al. (2010) remark that there is a lack of information of forests at a global scale. From 

NFI plot data, it is possible to map and quantify forest variables, as wood volume, biomass and 

carbon.  

Given their coverage and complexity on the field collection, NFIs play an important role 

for accurately informing forest resource stocks at a broad scale, which is useful in strategic planning 

of governmental activities related to natural forests. This is of special importance for countries that 

aim to control the use, management, and conservation of its forest resources. NFIs are also 

important to those countries that have committed to climate accords, mainly the countries that are 

Parties of the United Nations Framework Climate Change Conference (UNFCCC). Climate 

agreements often require that nations inform their greenhouse gas (GHG) emissions and estimates 

of their national forest resources (Deo et al., 2017; McRoberts et al., 2009; Cienciala et al., 2008), 

which can be informed by means of processing of NFI data. 

In the past, before the onset of the UNFCCC in 1994, other purposes rather than climate 

change and GHG reports have driven countries to conduct forest inventories. Tomppo et al. (2010) 

cite that the early NFIs in the Nordic countries usually included information about areas, wood 

volume and increment of the growing stock, as well as structure of forests, silvicultural status, and 

accomplished and needed cutting and silvicultural regimes. Recently, Vidal et al. (2016) explain 
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that the latest NFIs have been focused on sustainable ecosystem management, a different vision 

existent in earlier NFIs, which were more focused on wood production. 

Each country has different demands for conducting its NFI, despite certain types of 

information are common among some countries (Tomppo et al., 2010). NFIs have historical, 

commercial, and different environmental justification among the countries, meaning that the 

prospects for standardizing inventories are minimal (McRoberts et al., 2009). Because of this, there 

is an emerging trend towards standardization of NFI methodologies at least from a same continent, 

in order to facilitate providing international information (McRoberts et al., 2009).  

To meet these needs, Vidal et al. (2016) cite that the data provision mechanisms must be 

based on a robust and long-term statistical information system. In this sense, following a 

harmonized and standardized methodology, NFIs could play an important role for international 

reporting processes, as well as for enhancement of the comparability of national data to discuss 

forest policies (Vidal et al., 2016). 

 

2.1.2 Approximate standard error of a systematic sampling with clusters 

 

The main books on sampling techniques mostly are written by statisticians and because of 

this, examples in forestry are unlikely to be addressed on them. Often, NFIs follow sampling 

structures with features not found in the literature, what ends up implying that methodologies for 

obtaining statistical estimators (variance, standard error etc.) be adapted to specific cases of the 

NFIs. Some of the main books on sampling techniques are: Chacko (1965), Cochran (1977), and 

Sukhatme (1954). On forest inventory, it is highlighted Loetsch et al. (1973), Queiroz (2010), and 

Péllico Netto & Brena (1997), these two last mostly adopted in Brazil. 

Systematic samplings (SS) are commonly preferred in NFIs, mostly adopting clusters as 

sample units. SS with clusters is a typical two-stage sampling, in which, in the Brazilian NFI, the 

first and the second stages are systematically designed. A chapter about (equal-size) cluster 

sampling is addressed in Péllico Netto & Brena (1997), however, the estimators there presented is 

suited to cases which the first stage is random, unlike the Brazilian NFI. 

In the next topics, methods for approximating to variance and standard error were adapted 

to the Brazilian NFI. The standard error was obtained in order to calculate confidence interval of 

wood volume (m³ ha-1). The methods were statistically adapted with assistance from Professor Dr. 
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Sylvio Péllico Netto (UFPR, Brazil). See highlighted publications about forest inventory and 

sampling in Péllico Netto et al. (2017), Péllico Netto et al. (2014), Péllico Netto and Brena (1997). 

The alternative methods of approximation to the standard error for SS with clusters are presented 

below: 

 

a) Ratio Estimator for SS with clusters (adapted from Cochran, 1977) 

 

This proposed method is an adaptation from Ratio Estimator presented by Cochran (1977, 

p. 150-157) for simple random sampling. Applying it to SSs requires the assumption that systematic 

designs are particular cases of the random one. Such method is applied in the State of Santa 

Catarina (Vibrans et al., 2013) and in the Canadian NFI (Canada’s NFI, 2004). Once such method 

is usually applied, App. 1 shows the results of standard error, mean and total volume from database 

used in this study, though it was not the chosen method. To begin explaining this method, consider 

that the Brazilian NFI counts on both forested and non-forested clusters. Firstly let 𝑋𝑖 = 0 for non-

forested clusters, and 𝑋𝑖 = 1 for forested clusters, assuming that forested clusters may have p 100-

m² forested plots, with p ranging from 1 to 39, for those partially forested ones, or 40 plots, for 

those entirely forested ones (Fig. 6). The probability (𝑝𝑖) of a cluster having been allocated within 

forest is given by [1].  

𝑝𝑖 = (∑ 𝑎𝑗
𝑝
𝑗=1 )𝐴𝑐

−1  [1] 

 

Where, 

aj: area of the j-th forested plot, i.e., 100 m²; Ac: area of the cluster, i.e., 4,000 m². p: number of 

forested plots. 

 

Secondly, consider that among L sampled clusters, k are forested and L – k are non-forested 

clusters. Letting 𝐴𝑔 to be the area represented by each k cluster, i.e., ~40,000 ha, the mathematical 

expectation of forested area along the sampled area is given by [2]. 

𝐸(∑ 𝑋𝑖𝐴𝑔
𝐿
𝑖=1 ) = ∑ [(𝑋𝑖 = 0)𝑝𝑖𝐴𝑔]𝐿−𝑘

𝑖=1 + ∑ [(𝑋𝑖 = 1)𝑝𝑖𝐴𝑔]𝑘
𝑖=1 = ∑ 𝑝𝑖𝐴𝑔

𝑘
𝑖=1 =

∑ (∑ 𝑎𝑗
𝑝
𝑖=1 )𝐴𝑐

−1𝐴𝑔
𝑘
𝑖=1   
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𝐸(∑ 𝑋𝑖𝐴𝑔
𝐿
𝑖=1 ) = ∑ (∑ 𝑎𝑗

𝑝
𝑖=1 )𝐴𝑐

−1𝐴𝑔
𝑘
𝑖=1   [2] 

 

There are two ways to apply the method of Ratio Estimator: (i) considering forest volumes 

being proportional to the area of the clusters’ sub-units, that is 1,000 m²; and (ii) considering forest 

volumes being proportional to the square area of the clusters’ sub-units (Cochran, 1966). Loetsch 

et al. (1973) clarify theoretically such problem showing that 𝜎𝑦
2 = 2𝜎𝑥

2(1 + 𝑝), where 𝜎𝑦
2 is the 

variance of a sub-unit with double size in relation to another used for obtaining 𝜎𝑥
2, and p is the 

correlation between contiguous sub-units of equal size. Considering the case (i) for the Brazilian 

NFI case, i.e., adopting volumes proportional to the area of the sub-units, 𝜎𝑦
2 can be transformed 

into coefficient of variation (CV) as described in [3]: 

 

𝐶𝑉2
2 = 2𝜎𝑥

2(1 + 𝜌)(4�̅�2)−1 or simply  

𝐶𝑉2 = 𝐶𝑉1[(1 + 𝜌)/2]
1
2 [3] 

 

Where, 

CVi: coefficient of variation of the volume taken in the ith occasion; 𝜌: correlation between 

contiguous sub-units of equal size. �̅�: mean of the volume. 

 

As its name suggests, the method of Ratio Estimator takes into account ratios between 

volume and area, which in the NFI case, such volume and area are from sub-units from the partially 

and entirely forested clusters. Assuming that Brazil’s NFI counts on k forested clusters of M sub-

units (where M = 4) each one, the total number of sub-units is N = kM. Also, assuming that 𝑋𝑖𝑗 is 

the wood volume and 𝑌𝑖𝑗 is the forested area from the Nth sub-unit, the average ratio is then defined 

by [4]: 

�̅� =
∑ ∑ 𝑋𝑗𝑖

𝑀
𝑖=1

𝑘
𝑗=1

∑ ∑ 𝑌𝑗𝑖
𝑀
𝑖=1

𝑘
𝑗=1

=
�̅�

�̅�
 [4] 

 

The variance of the average ratio (�̅�) is: 
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𝑠�̅�
2 =

�̅�2

𝑘 − 1
[
∑ (∑ 𝑋𝑗𝑖

𝑀
𝑖=1 )

2𝑘
𝑗=1

�̅�2
+

∑ (∑ 𝑌𝑗𝑖
𝑀
𝑖=1 )

2𝑘
𝑗=1

�̅�2
− 2

∑ (∑ 𝑋𝑗𝑖
𝑀
𝑖=1 )(∑ 𝑌𝑗𝑖

𝑀
𝑖=1 )𝑘

𝑗=1

�̅� �̅�
] [5] 

 

The coefficient of variation of the average ratio (�̅�) is: 

𝐶𝑉 =
𝑠�̅�

�̅�
  [6] 

 

The variance of the mean of the average ratio (�̅�) is: 

𝑠�̿�
2 =

𝑠�̅�
2

𝑛
 for an infinite population [7] 

 

Finally, the standard error of the average ratio (�̅�) is given by: 

𝑠�̅� = √
𝑠�̅�

2

𝑛
 for an infinite population [8] 

 

b) Method of the First Differences for SS with clusters (adapted from Chacko, 1965) 

 

The Method of the First Differences (MFD) was originally proposed for single units 

(Chacko, 1965); here, an adaptation of the MFD to clusters is presented. To begin explaining how 

to obtain the sampling error, keep assuming that Brazil’s NFI is structured with k clusters of M 

sub-units (where M = 4), so that the total number of sub-units is N = kM. The following 

mathematical formulations consider 𝑋𝑖𝑗 associated to each sub-unit, such that X = variable of 

interest [in the present case, wood volume (m³ ha-1)], i = 1, 2, … M and j = 1, 2, ... k. The mean for 

the entire population is then given by: 

�̅� = 𝑁−1 ∑ ∑ 𝑋𝑖𝑗
𝑀
𝑖

𝑘
𝑗    

 

The sampling error in the MFD is calculated with the sums of the differences between pairs 

of successive units (i.e., cluster’s sub-units). Considering that we have M = 4 units per cluster, each 

cluster will count on 4 pairs: (i) first sub-unit is paired with the second one, (ii) second with the 

third, (iii) third with fourth, and (iv) the fourth sub-unit paired with the first one. This last pair is 
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included because the first and last sub-units are arranged side-by-side as the other pairs. Note that 

such arrangement is only possible between neighbor sub-units, and not between side-by-side plots.  

Fig. 1 gives an example of the arrangement of paired sub-units in clusters, which is 

necessary for computing sampling error in the Brazilian NFI, following the Method of the First 

Difference. 

 

FIG. 1. STEPS FOR OBTAINING SUMS OF THE DIFFERENCES BY PAIRS, NECESSARY FOR COMPUTING 

SAMPLING ERROR IN THE BRAZILIAN NFI, FOLLOWING THE METHOD OF THE FIRST DIFFERENCE. 

 

To calculate the variance, first it is necessary to obtain the difference between the wood 

volume of a sub-unit and of its paired sub-unit (Fig. 1). Let 𝑑𝑗𝑖 to be the difference of the volumes 

observed in paired sub-units, i.e., 𝑋𝑗𝑖 − 𝑋𝑗(𝑖+1). Hence, the variance is given by the sum of squares 

of the differences divided by twice the number of sub-units, since each sub-unit repeats twice. The 

variance of 𝑋 is given by: 

𝑆𝑋
2 ≅

∑ ∑ [𝑋𝑗𝑖 − 𝑋𝑗(𝑖+1)]
2𝑀

𝑖=1
𝑘
𝑗=1

2𝑘𝑀
=

∑ ∑ [𝑋𝑗𝑖 − 𝑋𝑗(𝑖+1)]
2𝑀

𝑖=1
𝑘
𝑗=1

2𝑁
=

∑ ∑ [𝑑𝑗𝑖]
2𝑀

𝑖=1
𝑘
𝑗=1

2𝑁
  

 

The variance of the mean (�̅�) is then obtained dividing 𝑆𝑋
2 by N, as follows: 
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𝑆�̅�
2 ≅

∑ ∑ [𝑑𝑗𝑖]
2𝑀

𝑖=1
𝑘
𝑗=1

𝑁(2𝑁)
=

∑ ∑ [𝑑𝑗𝑖]
2𝑀

𝑖=1
𝑘
𝑗=1

2𝑁2
  

 

The standard error is given by: 

𝑆�̅� ≅ √
∑ ∑ [𝑑𝑗𝑖]

2𝑀
𝑖=1

𝑘
𝑗=1

2𝑁2
 

 

 

c) Method of the Second Differences for SS with clusters (adapted from Chacko, 1965) 

 

As in the MFD, the Method of the Second Differences (MSD) was originally proposed for 

single units (Chacko, 1965) and an adaption to SS with clusters was necessary. As in the MFD, 

consider 𝑑𝑗𝑖 being the difference of the volumes observed in paired sub-units (𝑋𝑗𝑖 − 𝑋𝑗(𝑖+1)). The 

difference between MFD and MSD is that, in the MSD, it is considered the second difference ∆𝑗𝑖  =

𝑑𝑗𝑖 − 𝑑𝑗(𝑖+1), instead of simply 𝑑𝑗𝑖, which is the first difference of the volumes observed in the 

paired sub-units. 

Therefore, the idea of paired sub-units still remains, but now involving two paired sub-units 

at once, totaling three differences (∆𝑗𝑖) by cluster: (i) difference between 𝑑𝑗1 − 𝑑𝑗2; (ii) difference 

between 𝑑𝑗2 − 𝑑𝑗3; and (iii) difference between 𝑑𝑗3 − 𝑑𝑗4, where: 𝑑𝑗1 = 𝑋𝑗1 − 𝑋𝑗2; 𝑑𝑗2 = 𝑋𝑗2 −

𝑋𝑗3; 𝑑𝑗3 = 𝑋𝑗3 − 𝑋𝑗4; and  𝑑𝑗4 = 𝑋𝑗4 − 𝑋𝑗1, for the jth cluster. 

 

The variance of 𝑋 is given by: 

𝑆𝑋
2 ≅

∑ ∑ [𝑑𝑗𝑖 − 𝑑𝑗(𝑖+1)]
2𝑀

𝑖=1
𝑘
𝑗=1

2𝑘(𝑀 − 1)
=

∑ ∑ [𝑑𝑗𝑖 − 𝑑𝑗(𝑖+1)]
2𝑀

𝑖=1
𝑘
𝑗=1

2(𝑁 − 𝑘)
=

∑ ∑ [∆𝑗𝑖]
2𝑀

𝑖=1
𝑘
𝑗=1

2(𝑁 − 𝑘)
  

 

The variance of the mean (�̅�) is obtained by: 

𝑆�̅�
2 ≅

∑ ∑ [∆𝑗𝑖]
2𝑀

𝑖=1
𝑘
𝑗=1

2𝑁(𝑁 − 𝑘)
=

∑ ∑ [∆𝑗𝑖]
2𝑀

𝑖=1
𝑘
𝑗=1

2(𝑁² − 𝑁𝑘)
  

 

The standard error is given by: 
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𝑆�̅� ≅ √𝑆�̅�
2  

 

 

2.2 SATELLITE IMAGE CLASSIFICATION 

 

Image classification is a technique that produces thematic classes from multi-band images. 

According to Tempfli et al. (2009), the principle of image classification is that an image pixel (or 

object) is assigned to a class based on its feature vector, by comparing it to predefined clusters or 

classes in the feature space. A proper definition of classes is one of the main factors responsible 

for obtaining a well accurate image classification. The definition of classes is an interactive process 

and is carried out during the ‘training process’, whereas the comparison of the individual pixels (or 

objects) with the classes is performed through ‘classification algorithms’. Tempfli et al. explain 

that the image classification process typically involves five steps: 

 

1) Selection and preparation of the images. Satellite sensors, spectral bands, and date of 

acquisition should be carefully selected, according to the land cover types to be classified. 

2) Definition of the clusters (classes) in the feature space. Two approaches are possible: 

supervised classification (SC) and unsupervised classification (USC). In the SC, the user 

defines the clusters during the training process, i.e., process of sample selection. Selected 

samples are also known as training data. In the USC, in turn, an algorithm automatically 

defines the clusters and the user must choose the number of clusters. Therefore, selecting 

data for training is not required in the USC. 

3) Selection of classification algorithm. The choice of the algorithm depends on the purpose 

of the classification, on the characteristics of the image, as well as on the training data. It is 

cited as the main SC algorithms: Minimum Distance; Mahalanobis Distance; Maximum 

Likelihood; Neural Net-based and Fuzzy logic-based algorithms. It is cited as the main USC 

algorithms: IsoData; and k-means. 

4) Execution of the classification. To execute the image classification, besides the three steps 

above cited, the user must choose classification criteria that are used by the algorithms for 

finding similarities among image pixels/objects and the predefined clusters. 
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5) Validation of the result. Once the classification is performed, its accuracy should be 

assessed by comparing it to reference data, i.e., ground truth. 

 

In the step of data training, either samples of pixel or samples of objects can be used, from 

which two methods are derived: (i) pixel-oriented classification (ii) and object-oriented 

classification. Thus, the definition of clusters (step 3 described above) may be composed by 

samples of image pixels or objects, depending on the chosen classification method. 

 

2.2.1 Pixel-oriented classification 

 

Pixel-based classification may be executed both through supervised as unsupervised 

classifiers. According to Meneses and Sano (2012), most of the classifiers have implemented pixel-

oriented classification algorithms, from which only the spectral information of pixels is used to 

find homogeneous regions to assign pixels into clusters (classes). Regionalization of homogenous 

regions is performed through distance measures or odds of pixels belonging to a certain class. In 

this method, the image pixels are assigned to a class that better satisfies the determined criteria. 

 

2.2.2 Object-oriented classification 

 

Object-oriented classification was the method used in this study, with assistance from the 

software eCognition Developer 8.7. To execute the object-oriented classification, the process of 

image segmentation is necessary to group pixels into objects as homogenous as possible. According 

to Brites et al. (2012), the segmentation can be performed both manually as automatically. The 

manual procedure depends on delimitation of polygons that represent homogeneous regions along 

the image, therefore such alternative is often unfeasible for large areas. The automatic procedure, 

in turn, is widely used and depends on a (i) segmentation algorithm, and (ii) quantitative data, such 

as spectral bands, parameters of scale and shape of objects, among others. 

In this study, the algorithm ‘classification’ available in eCognition Developer 8.7 was used. 

This algorithm evaluates the membership value of an image object against a list of selected classes. 

The classification result of the image object is updated according to the class evaluation result. The 

three best classes are stored in the image object classification result. Classes without a class 
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description are assumed to have a membership value of 1. The software also provides several 

segmentation algorithms and executes fuzzy logic-based supervised classification. Among the 

algorithms available in the software, the ‘multiresolution segmentation’ algorithm was used, which 

is described in further detail as follows. 

The multiresolution segmentation is an optimization procedure that, for a given number of 

image objects, minimizes the average heterogeneity, maximizing thus their average homogeneity. 

In eCognition Developer 8.7, the segmentation procedure works following the six rules 

summarized below: 

 

1) The segmentation procedure starts with single image objects of one pixel and repeatedly 

merges them in several loops in pairs to larger units as long as an upper threshold of 

homogeneity is not exceeded locally. This homogeneity criterion is defined as a 

combination of spectral and shape homogeneity. Higher values for the scale parameter 

result in larger image objects, smaller values in smaller image objects. 

2) The seed looks for its best-fitting neighbor for a potential merger. 

3) If best fitting is not mutual, the best candidate image object becomes the new seed image 

object and finds its best fitting partner. 

4) When best fitting is mutual, image objects are merged. 

5) In each loop, every image object in the image object level will be handled once. 

6) The loops continue until no further merger is possible. 

 

The software eCognition Developer 8.7 allows users to set algorithm parameters that have 

to be carefully analyzed. Fig. 2 presents window displaying parameters available for the 

‘multiresolution segmentation’ algorithm. The algorithm parameters available in eCognition 

Developer 8.7 (Fig. 2) help to improve the segmentation depending on user’s specific aims, satellite 

bands, and targets to be classified. Each parameter highlighted with balloons in Fig. 2 is briefly 

described below. Torres-Sánchez et al. (2015) assess how the values in the parameters of the 

software eCognition affect segmentation results. 
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FIG. 2. ECOGNITION DEVELOPER 8.7 WINDOW DISPLAYING SEGMENTATION PARAMETERS, 

HIGHLIGHTING WEIGHTS FOR IMAGE LAYERS (BALLOON 1), THEMATIC LAYER USAGE (2), 

PARAMETERS OF SCALE (3), SHAPE  (4) AND COMPACTNESS (5), AS WELL AS NUMBER OF CYCLES 

OF SEGMENTATION (6). 

 

i. Segmentation Settings 

 

o Image Layer Weights (Fig. 2, Balloon 1): Weighting values are assigned obeying 

the contribution of image layers. The higher the weight assigned to an image layer, 

the more weight will be given to that layer’s pixel information during the 

segmentation process. Users can use a variable as a layer weight. 

 

o Thematic Layer Usage (Fig. 2, Balloon 2): Users have to specify the thematic layers 

to be candidates for segmentation. Each thematic layer that is used for segmentation 

will lead to additional splitting of image objects while enabling consistent access to 

its thematic information. Users also can segment an image using more than one 

thematic layer. The results are image objects representing proper intersections 

between the thematic layers. 
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o Scale Parameter (Fig. 2, Balloon 3): The parameter is an abstract term that 

determines the maximum allowed heterogeneity for the resulting image objects. For 

heterogeneous data, the resulting objects for a given scale parameter will be smaller 

than in more homogeneous data. By modifying the value in the Scale Parameter 

value, users can vary the size of image objects. 

 

ii. Composition of Homogeneity Criterion 

 

o Shape (Fig. 2, Balloon 4): The value of the Shape field modifies the relationship 

between shape and color criteria. By modifying the Shape criterion, users can define 

the color criteria. In effect, by decreasing the value assigned to the Shape field, users 

can define to which percentage the spectral values of the image layers will 

contribute to the entire homogeneity criterion. This is weighted against the 

percentage of the shape homogeneity, which is defined in the Shape field. Changing 

the weight for the Shape criterion to 1 will result in objects more optimized for 

spatial homogeneity. However, the shape criterion cannot have a value larger than 

0.9, due to the fact that without the spectral information of the image, the resulting 

objects would not be related to the spectral information at all. The slider bar adjusts 

the amount of Color and Shape to be used for the segmentation. In addition to 

spectral information, the object homogeneity is optimized with regard to the object 

shape, defined by the Compactness parameter. 

 

o Compactness (Fig. 2, Balloon 5): The compactness criterion is used to optimize 

image objects with regard to compactness. This criterion should be used when 

different image objects which are rather compact but are separated from non-

compact objects only by a relatively weak spectral contrast. Users can use the slider 

bar to adjust the degree of compactness to be used for the segmentation. 
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iii. Loops and cycles (Fig. 2, Balloon 6) 

 

This option allows that users choose the number of cycles in the segmentation process. 

Leaving the algorithm to loop while no further object is segmented also is possible. 

 

2.3 IMAGE PROCESSING FOR VEGETATION ASSESSMENT 

 

2.3.1 Spectral response of vegetation 

 

Spectral response consists of the energy detected by remote sensors and recorded as digital 

measurements, therefore it is related to the spectral resolution of a remote sensor. The spectral 

response can be determined for any material/target, as vegetation, soil, roads, water resources, etc. 

(Lillesand et al., 2014; Wang and Weng, 2013). The term spectral signatures is preferably used 

instead of spectral responses, because spectral response measured by remote sensors over various 

features often allow assessing the type or condition of the features (Lillesand et al., 2014). Franklin 

(2001) summarizes (in order of importance) the factors affecting remote sensing spectral response 

as follows: 

 

1. The spectral properties (reflectance, absorption, transmittance) of the target; 

2. The illumination geometry, including topographic effects; 

3. The atmosphere 

4. The radiometric properties of the sensor (e.g., signal-to-noise ratio); 

5. The geometrical properties of the target (e.g., leaf inclination). 

 

Atmosphere, temporal and spatial effects influence spectral response because the energy 

recorded by a sensor is always modified to some extent by the atmosphere between the sensor and 

the ground (Lillesand et al., 2014). In this scope, Wang and Weng (2013) explain that surveys that 

examine spectral response of vegetation, such as natural forests, are always challenging because 

the spectral signature of trees is affected not only by the variation in crown illumination, but also 

by several other background effects. Therefore, understanding the basic pattern of reflectance and 

absorption can help with the interpretation of remote sensing imagery in forestry applications 
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(Franklin, 2001). Fig. 3 gives an illustration of the spectral response curve of chlorophylls in green 

leaves and of water.  

 

FIG. 3. SPECTRAL RESPONSE CURVES OF VEGETATION ILLUSTRATING THE PORTIONS OF THE 

SPECTRUM IN WHICH ABSORPTION AND REFLECTANCE DOMINATE. IMAGE SOURCED FROM 

FRANKLIN (2001). 

 

Franklin (2001) explains that for a green leaf, it is normally observed a small green peak 

reflectance (at approximately 550 nm), and that the rapid rise in reflectance in the near-infrared 

(before 1000 nm) occurs in the red-edge (Fig. 3). The notable variations of leaves among tree 

species, and even variations in a same tree, affect the reflectance and radiance captured by spectral 

bands from remote sensors.  

In the visible range (400 nm – 720 nm), leaf pigments (chlorophyll, carotene, and 

xanthophyll) dominate the reflectance and therefore they define the reflectance curve in this 

spectral region. In the near infrared (NIR) range (720 nm – 1,100 nm), there is few absorptions of 

radiation in leaves, so that the larger the gap of the leaves’ internal structure, the larger the 

reflectance. In the shortwave infrared (SWIR) range (1,100 nm – 3,200 nm), in turn, the reflectance 

is more affected by the water in the leaves (Ponzoni et al., 2012). Fig. 4 shows the behavior of 

types of vegetation employing Landsat-8 OLI bands and compositions, including the bands (Red, 

Infra-red, short-wave infra-red) cited above. 
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True color 

(B4-B3-B2) 

False color 

(B6-B5-B4) 

SWIR I 

(B6) 

NIR 

(B5) 

Red 

(B4) 

Planted forest 

     
Early-successional forest 

     
Mid- to late-successional forest 

     
Tillage or pasture 

     
Exposed soil 

     
Mosaic of landscapes 

     

FIG. 4. KEY OF INTERPRETATION OF VEGETATION TARGETS BY MEANS OF COMPOSITIONS AND 

SINGLE-BAND IMAGES OF LANDSAT-8 OLI. SWIR I: SHORT-WAVE INFRA-RED. NIR: NEAR INFRA-RED. 

SOURCE: THE AUTHOR. 
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Reflectance (and radiance) are physical units used to facilitate comparison between the 

same or different sensors at different times, and the comparison between satellites (Franklin, 2001). 

This is a required task because remotely sensed data are typically presented to the user as digital 

number (DN). In fact, DNs are consistent internally within the image and between different bands 

(or wavelengths), but they have to be transformed into reflectance (or radiance) by standardization 

and comparison reasons (Franklin, 2001). 

The at-sensor radiance equation is given by [9]: 

𝐿𝑠 = 𝑎0 + 𝑎1𝐷𝑁 [9] 

 

Where: 

𝐿𝑠: at-sensor radiance (𝑊 𝑚−2 𝜇𝑚−1 𝑠𝑟−1); DN: digital number; 𝑎𝑖 absolute calibration 

coefficients of a given satellite. 

 

The coefficients 𝑎0 and 𝑎1 would be equivalent to a simple gain and offset, based on a 

scaled measure of the range of DN in the image, plus a spectral reference. However, the 

measurement most useful in forestry is reflectance, which is a property of the target alone (Franklin, 

2001). At-sensor reflectance is given by [10]: 

𝑝 =
𝜋 𝑑2 𝐿𝑠

𝐸0 𝑐𝑜𝑠𝜃𝑧
 [10] 

 

Where: 

𝑝: apparent reflectance; 𝑑: normalized Earth/Sun distance; 𝐿𝑠: at-sensor radiance 

(𝑊 𝑚−2 𝜇𝑚−1 𝑠𝑟−1); 𝐸0: irradiance (𝑊 𝑚−2 𝜇𝑚−1); 𝜃𝑧: solar zenith angle. 

 

2.3.2 Combined use of NFI and satellite imagery data for quantifying forest resources 

 

Perhaps, wood volume, biomass and carbon are the most important forest variables for the 

economic and conservation points of view. Estimating stocks and increments of these variables at 

a large scale provides a broad vision of resources available in a country, allowing it to better control 

timber (firewood, saw log, etc.) flow and prices, as well as to estimate carbon sequestration and 

emission. 
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At a national level, NFI plots are the most important source of data for estimating forest 

variables by means of different methods (McRoberts et al., 2009). Remotely sensed data are often 

combined with NFI data in order to estimate and map forest attributes. Several studies have shown 

that such combination produces more accurate and precise estimates, being therefore useful for 

large area forest attribute mapping (Bohlin et al., 2017). 

Among the main cited forest variables, studies testing satellite data-derived estimates (e.g., 

Mäkelä and Pekkarinen, 2004; Mohammadi et al., 2010) have shown that wood volume is more 

difficult to model than AGB and carbon. Lu et al. (2004) cite examples of authors who found strong 

relations between the visible bands and biomass, and negative relations between the middle infrared 

bands and wood volume. Other forest variables, such as crown closure, basal area, mean height of 

trees etc, also have been accurately estimated by using remotely sensed data (Lu et al., 2004; 

Thenkabail et al., 2003). Thenkabail et al. (2003) used satellite data even to estimate diversity 

indices and species associations, which are variables that can be easily estimated in NFI data. 

Gobakken et al. (2012) used NFI field plots to estimate AGB at various geographical scales. 

These authors combined field data with airborne laser scanner (ALS) data, testing two estimation 

strategies; a model-dependent and a model-assisted. Gobakken et al. found that the two laser-

ground estimation strategies differed from the NFI AGB estimates by about 2% and 8%. The results 

indicated a proper application of the methods for estimating AGB at different scales. Ene et al. 

(2016), Maack et al. (2016), Margolis et al. (2015), and Maltamo et al. (2009) also obtained 

accurate results in AGB and/or wood volume estimations, by integrating NFI data with ALS data. 

Deo et al. (2017) estimated AGB but combining NFI plot data with medium spatial-

resolution satellite data, as well as with a statewide LiDAR dataset. The authors obtained accuracy 

considered acceptable for mapping AGB. Also, with satellite data, Fazakas et al. (1999) estimated 

AGB and wood volume through NFI plot data. Fazakas et al obtained RMSE of up to 8.7% for 

biomass and 4.6% for wood volume when they increased the aggregation of cells (pixels) to 510 

ha. Tomppo et al. (2002) also obtained accurate results in estimating these two variables (wood 

volume and AGB) combining Landsat-TM data and IRS-1C WiFS data, together with NFI plot 

data. 

The present study also applies a combined use of remotely sensed and NFI data, testing 

modeling of forest variables through two pixel-level methods: (i) linear regression models, with 

use of surface reflectance of pixels; and (ii) regression-kriging, with use of geographical variables. 
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Regression models have been widely used to estimate and map forest variables, as function of pixel 

information, including reflectance, radiance, digital number, vegetation index, combined or not. 

The following surveys are examples of such application: Blackard et al. (2008), Deo et al. (2017), 

Dube and Mutanga (2015), Foody et al. (2003), Gara et al. (2017), Hall et al. (2006), Mohammadi 

et al. (2010), Powell et al. (2010), Schroeder et al. (2008), Tomppo et al. (2002), Zheng et al. 

(2004), and Zheng et al. (2007). Comparisons among regression models and other estimation 

techniques derived from satellite imagery data are addressed in Lu (2006). 

RK is a geostatistical, hybrid method that combines kriging with a regression-kriging model 

(RKM) (Odeh et al., 1995). The role of the RKM is to introduce regression residuals (also called 

uncertainty) into the spatial analysis (Meng et al., 2009). Thus, the RK method has the advantage 

of generating estimates for the spatial distribution of the variables of interest, and its uncertainty 

for the study area. The uncertainty maps allow the evaluation of the reliability of estimates by 

identifying the locals with major uncertainties, which can be useful, for example, to select different 

estimation methods for those areas. Among the RK applications, it can be cited: Viana et al. (2012) 

used RK for estimating forest variables. Hengl et al. (2007) combined RK and satellite imagery 

data. Mello et al. (2015), Scolforo et al. (2015), and Angulo-Martínez et al. (2009) employed 

geographical variables in RKMs, such as done in the present study.  
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3. MATERIAL AND METHODS 

 

3.1 STUDY AREA AND DATA SOURCE 

 

The study area covers three political regions of the State of Parana: Mid-West, Mid-South, 

and Southeast (Fig. 5). These regions are located across the Plateau of Ponta Grossa (second 

plateau) and the Plateau of Guarapuava (third plateau), with altitude ranging from 320 to 1,300 m. 

This area fits into the Atlantic Forest biome; forest types as Rainforest, followed by Savanna, and 

Seasonal Forest, cover the major part of the study area. According to Köppen classification, Cfa 

and Cfb are the predominant climate in the region, i.e., a sub-tropical climate without dry seasons, 

with mean temperatures higher than 22 ºC (Cfa) in some regions, and lower than 22 ºC (Cfb) in 

other ones. 

 
FIG. 5. STUDY AREA AND LOCATION OF CLUSTERS ALLOCATED FOLLOWING STANDARDS OF THE 

NFI SAMPLING OVER THE STUDY AREA. 
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Data from the National Forest Inventory (NFI) carried out in these regions of Parana were 

used. The study area covers ~55,331 km² or ~28% of the State of Parana and it was the first region 

in the state to be inventoried by following the standardized NFI sampling design. Field data were 

collected during the first half of 2013, in which 152 clusters were systematically allocated over 

these regions. Fig. 5 shows the study area and location of each cluster of the NFI. 

As in many other countries, the Brazilian NFI follows a systematic sampling design with 

regular grid of 20 x 20 km, but such distance reduces insofar as it moves away from the Equator 

line to the polar region, due to the curvature of the Earth. By following this grid, fixed-area clusters 

are allocated throughout Brazil for collecting forest variables, including tree dimensions and sanity, 

dead and alive biomass, soil samples, identification of forest species, among others. The clusters 

consist of structures with four 1,000-m² sub-units; each sub-unit is still split into ten 100-m² plots, 

in which the tenth plot of each sub-unit is split twice again into smaller sub-plots. Fig. 6 shows 

cluster dimensions and criteria for inclusion of trees for measurement. 

 

FIG. 6. CLUSTER DIMENSIONS AND LANDSCAPES OBSERVED IN THE NFI SAMPLING. 
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As the NFI is established in a systematic sampling design, clusters can be allocated in any 

landscape, i.e., both in forested as in non-forested areas. Clusters in natural forests can be 

categorized into entirely-forested or partially-forested clusters, meaning that can be allocated 

entirely or partially within forests, respectively. Fig. 6 also shows the main landscapes observed in 

the inventory carried out in this part of the State of Parana. 

According to the NFI’s methodology, each 100-m² plot is categorized in relation to its 

predominant land-use, i.e., the one that occupies the larger extension of a plot. This categorization 

includes nineteen land-uses of which seven of them relate to natural forest: 1) mature forest; 2) 

mid-successional forest with palm trees; 3) mid-successional forest without palm trees; 4) mid-

successional palm tree forest; 5) early-successional forest with palm trees; 6) early-successional 

forest without palm trees; and 7) early-successional palm tree forest.  

Entirely-forested clusters correspond to the case in which all the 100-m² plots are classified 

into one of these seven classes of natural forest. Likewise, partially-forested cluster is that one in 

which at least one 100-m² plot is classified into one of these classes. 

 

3.2 ANALYTICAL PROCEDURE 

 

 The first variable of interest of this research is wood volume (m³ ha-1), resulting from the 

sum of stem volume of all woody trees observed in the entirely- or partially-forested clusters. Wood 

volume was modeled at tree level, estimated by cluster, and then extrapolated to non-sampled areas 

at coarse and fine scales. Fine-scale estimations, i.e., at pixel level, rely on application of (i) linear 

regression modeling on remotely sensed data, and (ii) regression kriging. These fine-scale methods 

were compared to the extrapolation at a coarse scale.  

The second variable of interest is aboveground forest biomass (AGB, Mg ha-1), resulting 

from the sum of biomass of aerial compartments (stem, branches, and leaves) of all woody trees 

observed in forested clusters. The third variable is forest carbon stock (Mg ha-1), directly estimated 

by a conversion factor of biomass. Such as wood volume, these two variables also were modeled 

at tree level, estimated by cluster, and extrapolated to non-sampled areas, however, they were 

extrapolated at fine scale only, so no comparison between extrapolations at fine and coarse scales 

was done for these two variables. Models and procedures used to estimate tree-level wood volume, 
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biomass and carbon are presented in section [3.2.1 (ii)]. Fig. 7 and the following sections describe 

steps of the analytical procedure. 

 
FIG. 7. ANALYTICAL PROCESS STEPS FOR ESTIMATING AND EXTRAPOLATING WOOD VOLUME IN 

NATURAL FORESTS AT COARSE AND FINE SCALES. 

 

3.2.1 Forest inventory procedures 

 

i. Collection of tree variables 

 

The first step of the analytical procedure consists of collecting the field data necessary to 

forest modeling (Fig. 7, step 1). As described, tree data were collected in 152 clusters 

systematically allocated along the study area. Every woody tree, palm tree, and tree fern, observed 

in the 100-m² plots, dead and alive, with diameter at breast height (Dbh) ≥10 cm (Fig. 6), had its 

Dbh measured with a diameter tape, besides the total height of some selected trees measured by 
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using an electronic clinometer; total and merchantable heights of the remaining trees were visually 

estimated. Despite both palm trees and tree ferns were measured in the NFI, the analyses took into 

account data of woody alive trees only, first because the volume/biomass of palm trees and tree 

ferns are ~1.1% over the total, and second because this study focuses on wood forest product. 

 

ii. Tree-level modeling 

 

Tree-level modeling (Fig. 6, step 2) was applied to estimate the following variables: (i) tree 

height, (ii) stem volume, (iii) tree biomass, and (iv) tree carbon. 

 

 Height-diameter modeling 

 

In the Brazilian NFI, few trees have their total height measured through clinometer; the 

remaining trees have total height visually estimated. In order to avoid errors caused by naked-eye 

estimations, the total height of trees measured without clinometer was estimated by the Naslund 

model [11]. 

ℎ − 1.3 =
𝐷𝑏ℎ2

(𝑎 + 𝑏𝐷𝑏ℎ)²
 [11] 

 

Given the experiences and great results obtained by Péllico Netto et al. (2015), data were 

split into four datasets obeying the following strata of height/diameter ratio (h/d): (i) 0.2 ≤ h/d < 

0.7, (ii) 0.7 ≤ h/d < 1.2, (iii) 1.2 ≤ h/d < 1.7, and (iv) h/d ≥ 1.7. The Naslund model was fitted to 

each dataset. 

 

 Individual tree volume estimation 

 

This step consists of estimating volume of the stem of trees, considering stem as the section 

from zero to total height of the tree, disregarding volume of crown and roots. Here is proposed an 

alternative method based on equations from the project “Forest Inventory of Pine in the Southern 

Brazil”, carried out during the 1970s (IDBF, 1978). Such study applied the model [12] was used 

for estimating diameters along stems (IDBF, 1978, p. 130). 
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𝐷ℎ𝑖
= 𝑎 + 𝑏 ℎ𝑖 [12] 

 

In [12], 𝐷ℎ𝑖
 is the diameter at the i-th height,  ℎ𝑖 is a given height of the tree, and the 

coefficients a and b are derived from two sub-equations: one fitted for broad-leaved species [13], 

and another for the species popularly known as Pine-of-Parana (Araucaria angustifolia (Bert.) O. 

Kuntze) [14]. Due to its high ecological importance in Parana, a species-specific equation was used 

to the species Araucaria. 

 

Broad-leaved species  

𝑎 = 1.2124 𝐷𝑏ℎ0.9975 ℎ−0.0606 [13.a]* 

𝑏 = 0.8994 𝐷𝑏ℎ−0.0584 ℎ0.0317 [13.b]* 

  

Araucaria species  

𝑎 = 1.2063 𝐷𝑏ℎ0.9855 ℎ−0.0531 [14.a]* 

𝑏 = 0.8986 𝐷𝑏ℎ−0.0360 ℎ0.0283 [14.b]* 

 

Where, 

Dbh: diameter at breast height (over-bark), in cm. h: tree total height, in m. * Equations taken from 

IDBF, 1978, p. 130. 

 

Knowing that any diameter along the stem can be estimated by inputting the sub-equations 

[13] and [14] into the model [12], the diameter at ground height (Dgh) can be estimated if ℎ𝑖 is set 

to zero; consequently, the estimation of Dgh disregards the sub-equation b. The equations for 

estimating the Dgh of broad-leaved [15] and Araucaria [16] species can be described as follows. 

𝐷ℎ𝑖=0 = 𝐷𝑔ℎ = 1.2124 𝐷𝑏ℎ0.9975 ℎ−0.0606 [15] 

  

𝐷ℎ𝑖=0 = 𝐷𝑔ℎ = 1.2063 𝐷𝑏ℎ0.9855 ℎ−0.0531 [16] 
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The proposal for estimating individual tree volume is based on a form factor that relates the 

half of the sectional area at ground height, and the sectional area at breast height. By a matter of 

semantics, the proposed form factor [17] was named as the ‘sectional form factor’, symbolized by 

𝑓0.5𝑔. Its formulation is given as follows: 

𝑓0.5𝑔 =
𝜋

40000

𝐷𝑔ℎ2

2

𝜋

40000
𝐷𝑏ℎ2⁄   

  

𝑓0.5𝑔 =
𝐷𝑔ℎ2

2𝐷𝑏ℎ2
 [17] 

 

Replacing the equations [15] and [16] in [17], we have the sectional form factor equations 

for broad-leaved species and for the Araucaria species, respectively. Table 1 gives the equations 

used to estimate individual tree volume of these species. 

 

TABLE 1. EQUATIONS APPLIED TO ESTIMATE STEM VOLUME IN FORESTED CLUSTERS. 

Volume equations   

    

𝑣 = 𝑠1.3 ℎ 𝑓0.5𝑔 , where  𝑓0.5𝑔 =  
(1.2124 𝐷𝑏ℎ0.9975 ℎ−0.0606)2

2𝐷𝑏ℎ²
 

Broad-leaved 

species 

    

𝑣 = 𝑠1.3 ℎ 𝑓0.5𝑔 , where  𝑓0.5𝑔 =  
(1.2063 𝐷𝑏ℎ0.9855 ℎ−0.0531)2

2𝐷𝑏ℎ²
 

Araucaria 

species 

    

v: stem volume (over-bark), in m³. s1.3: sectional area (over-bark) at breast height, in m². f0.5g: sectional form factor. 

Dbh: diameter at breast height (over-bark), in cm. h: tree total height, in m. 

 

That alternative method has two main differences from the traditional form factors: first 

because here sectional areas are used rather than diameters, which was chosen after trials involving 

both broad-leaved species and Araucaria from inventory databases. Secondly, and perhaps the main 

reason for this proposal, is that the Dgh has not to be collected, even because no diameter besides 

Dbh is collected in the NFI. To who wants to adjust the proposed methodology, the accessibility 

of the Dgh is cited as another great advantage in relation to the traditional form factors, which 

generally require measurements of inaccessible diameters. 

 

 

 Tree biomass and carbon estimation 



52 

 

 

 

 

A biomass equation and a biomass-carbon conversion factor fitted by Ratuchne (2010) were 

applied to estimate, respectively, tree biomass and carbon (Table 2). Ratuchne considered biomass 

of stem, dead and alive branches, trunk bark, and foliage of the trees. The biomass equation (Table 

2) provided RMSE of 47.24% and R² of 95.5%. The average conversion factor, proportional to the 

average weights of each compartment (Ratuchne, 2010, p. 44), was 41.0%. Ratuchne employed 

data from forests belonging to the Mixed Ombrophlilous Forest, in Parana, Brazil. 

 

TABLE 2. EQUATIONS APPLIED TO ESTIMATE TREE BIOMASS AND CARBON IN FORESTED CLUSTERS. 

Biomass and carbon equations 

   

Mixed Ombro- 

phlilous Forest 
𝑏𝑚 = −3.025 𝐷𝑏ℎ + 0.425 𝐷𝑏ℎ2 + 0.006 𝐷𝑏ℎ2ℎ 

   

𝑐 = 0.41 𝑏𝑚 

  

bm: total tree biomass, in kg. c: total tree carbon, in kg. Dbh: diameter at breast height (over-bark), in cm. h: tree total 

height, in m. Source: Ratuchne (2010). 

  

Descriptive statistics of the main tree variables are presented in Table 3, including Dbh, 

total height, stem volume, tree biomass and carbon estimated by equations (Table 1 and Table 2), 

and artificial form factor; this last being the ratio between the estimated volume and volume of a 

cylinder with diameter = Dbh and height = total height of the tree. 

 

TABLE 3. DESCRIPTIVE STATISTICS OF TREE VARIABLES BY SPECIES CLASS, IN NFI DATA.  

Tree variable Minimum Medium Maximum CV (%) n 

Broad-leaved species 

Diameter at breast height (cm) 10.0 18.4 118.3 52.0% 10,822 

Total height (m) 1.4 10.4 28.0 34.9% 10,822 

Form factor 0.481 0.551 0.696 4.8% 10,822 

N. of trees ha-1 (Dbh ≥ 10 cm)* 3 237 1,208 91.4% 10,822 

Volume (m³.tree-1)* 0.009 0.228 9.512 189.0% 10,822 

Total biomass (kg.tree-1)* 40.7 213.3 7,372.3 157.0% 10,822 

Total carbon (kg.tree-1)* 16.7 87.4 3,022.6 157.0% 10,822 

Araucaria species 

Diameter at breast height (cm) 10.0 27.1 74.8 53.5% 526 

Total height (m) 4.0 13.4 26.0 32.5% 526 

Form factor 0.458 0.508 0.587 4.7% 526 

N. of trees ha-1 (Dbh ≥ 10 cm)* 3 53 1,315 350.0% 526 

Volume (m³)* 0.020 0.580 4.831 128.1% 526 

Total biomass (kg.tree-1)* 42.5 488.8 3,180.6 112.6% 526 

Total carbon (kg.tree-1)* 17.4 200.4 1,304.0 112.6% 526 

* number of trees by cluster. 

iii. Systematic Sampling with Cluster 
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Brazil’s NFI follows a systematic sampling (SS) with cluster in which each cluster is split 

into four equal-size sub-units (Fig. 6). To accomplish the extrapolation of wood volume at a coarse 

scale, two important sampling approaches had to be taken into account. Firstly, the variance from 

a SS is highly dependent on the arrangement from which the units are distributed along the 

population (Chacko, 1965). Secondly, a SS is likely to be as efficient as homogeneous units are put 

spatially together, so that samples taken in different occasions are more or less alike (Chacko, 

1965). 

It is based on the cited theoretical concepts that it was opted to apply the Method of First 

Difference (MFD) for obtaining sampling error, which is a method suited to SSs. The step-by-step 

procedure for obtaining sample estimators by MFD is presented in the section 2.1.2. In fact, the 

MFD approximates the sampling error as the other methods applied in SSs. Opting for the MFD, 

rather than, for example, a method suited to random sampling, is due to the Maltese cross structure 

of the NFI’s clusters. Such structure favors a spatial homogeneity and dependence of the sub-units, 

favoring the NFI case to fit into the theoretical concepts of SSs cited in Chacko (1965). Processing 

data from a systematic sample as if it is from a random sample might be a simpler alternative, but 

some statistical improprieties would imply in overestimates of the standard error (Chacko, 1965). 

With the standard error obtained by the MFD (section 2.1.2), the confidence intervals (α = 

0.05) for the mean of the variable of interest, in this case, wood volume (m³ ha-1), is given by: 

[�̅� − 𝑡𝑆�̅� ≤ �̅� ≤ �̅� + 𝑡𝑆�̅�] = 95%  

 

For the total, the confidence interval is given by: 

[�̂� − 𝑁𝑡𝑆�̅� ≤ 𝑋 ≤ �̂� + 𝑁𝑡𝑆�̅�] = 95%  

 

Due to the lack of normality, the variable wood volume had to be transformed by means of 

the Box-Cox transformation [18]. With an optimized λ = 0.405, the Kolmogorov-Smirnov test for 

normality indicated the normalization of data at 95% probability level. 

𝑌𝑖(𝜆) =
𝑋𝑖

𝜆 − 1

𝜆
 [18] 
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 As described before, Brazil’s NFI possesses both forested as non-forested clusters (Fig. 6), 

in addition, forested clusters may be either entirely or partially forested. In this research, non-

forested clusters were disregarded from the calculations of sampling error. By non-forested cluster, 

it was considered that cluster without trees with Dbh ≥ 10 cm in the 40 plots, in the four sub-units. 

There are important issues to highlight about that inclusion criterion that relies on the Dbh 

size. First, a cluster may have no tree with Dbh ≥ 10 cm and be classified as entirely-forested 

cluster. This situation occurs when all its 40 plots fall into (and are classified as) very-young tree 

vegetation (popularly called capoeirão), where there are thin trees only; this is a typical example 

by which a cluster is disregarded from the statistical analysis, even being entirely within forest. 

Second, taking that same example (40 plots classified as forest), but considering now that some 

plots (< 40) have trees with Dbh ≥ 10 cm; this cluster was considered here as partially forested, 

although it is classified as entirely-forested cluster.  

The last issue, but not least, concerns to the bigger variance that partially-forested clusters 

should produce in relation to the entirely forested ones, resulting in a bigger sampling error. It 

means that the expected sampling error is bigger than if the statistical analysis had entirely-forested 

clusters only. To demonstrate such supposition, three datasets were considered for calculating the 

sampling error: (i) with partially-forested clusters only, (ii) with entirely-forested clusters only, and 

(iii) with both together, so that single estimators were obtained for all clusters. This last case was 

employed to compare with the fine-scale methods. 

 

3.2.2 Remote sensing and image interpretation 

 

i. Satellite imagery and pre-processing 

 

Remotely sensed data and image interpretation were necessary to perform the fine-scale 

estimations (Fig. 7, step 7b). To cover the study area, seven Landsat-8 OLI imagery was 

downloaded from the U.S. Geological Survey (USGS).  The next steps of the analytical process 

(Fig. 7, steps 4, 5, 6, and 7) then depend on satellite imagery. 

The main information about the Landsat-8 OLI imagery is shown in Table 4. The period 

from 2013-Dec to 2014-Feb was chosen to acquire the satellite imagery because it provides cloud 

cover lower than 0.25% for all imagery. 
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TABLE 4. INFORMATION ABOUT LANDSAT-8 OLI IMAGERY ACQUIRED FOR REMOTE SENSING 

ANALYSIS AND IMAGE INTERPRETATION. 

Path/Row Acquisition date (y-m-d) Cloud cover 

221/077 2013-12-04 0.06% 

221/078 2014-01-21 0.12% 

222/077 2014-01-28 0.02% 

222/078 2013-10-08 0.11% 

223/076 2013-12-09 0.01% 

223/077 2014-02-04 0.02% 

223/078 2014-01-19 0.25% 

 

Imagery pre-processing that is required before performing the subsequent analyses were 

performed with Envi 5.3, being: (i) conversion of digital number to radiance scale, and (ii) 

conversion of radiance to surface reflectance (Fig. 7, step 4), this last executed with Fast Line-of-

sight Atmospheric Analysis of Hypercubes (FLAASH) algorithm, implemented in Envi 5.3. 

FLAASH performs atmospheric correction necessary to remove most of the haze and other 

atmospheric perturbations (Nazeer et al., 2014). After this, the (iii) imagery was reprojected to 

Sirgas 2000 and (iv) clipped for removing overlapped borders from neighbor scenes. 

 

ii. Imagery classification 

  

The next step refers to imagery classification (Fig. 7, step 5), performed through the 

software eCognition Developer 8.7. This software executes object-oriented classification, where 

‘objects’ means a definite spatially connected region of the satellite image. For this reason, object-

oriented classification requires that imagery be segmented into small objects; operation known as 

image segmentation. eCognition Developer 8.7 allows users to segment imagery by means of seven 

different algorithms, in which the ‘multiresolution segmentation’ algorithm was chosen for this 

research. This algorithm applies an optimization procedure for locally minimizing the average 

heterogeneity of objects. Fig. 8 shows the ‘multiresolution segmentation’ algorithm window 

displaying the standardized parameters chosen in this study, after an exploratory analysis. 
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FIG. 8. ECOGNITION DEVELOPER 8.7 WINDOW DISPLAYING SEGMENTATION PARAMETERS AND 

WEIGHTS FOR IMAGE LAYERS USED FOR CLASSIFYING LANDSAT-8 SCENES. 

 

As seen in Fig. 8, the ‘multiresolution segmentation’ algorithm uses image layers and 

weighs for each layer as segmentation criteria, besides parameters referring to size (scale), shape, 

and compactness of the image objects. For this research, all the seven images were segmented using 

always the same standardized parameters and image layer weights (w), as well as the same image 

layers: SWIR1 (Layer1), NIR (L2), and Red (L3). 

 After performing an exploratory analysis changing weights (w), parameters, and layers, the 

largest weight (w = 1.6) was assigned to SWIR1 (i.e., Layer 1), followed by NIR (Layer 2, w = 

1.0) and Red (Layer 3, w = 0.6) (Fig. 8). The values for the shape and compactness parameters (0.1 

and 0.5, respectively, Fig. 8) were defined so that objects be as homogeneous as possible. These 

segmentation parameters generated so small objects (consequently in so large volume) that it was 

necessary to split the Landsat imagery into four equal parts, due to the high computational burden.  

Once concluded the segmentation process, the imagery was finally classified into land-use 

classes (Fig. 7, step 5). eCognition Developer 8.7 is a fuzzy rule-based classifier (Gupta and 

Bhadauria, 2014) that associates image objects with previously determined classes; the process is 

a supervised classification such that samples (of objects) are collected for representing previously 
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determined classes. The number of collected samples by class varies, but it should be large enough 

to compose a frequency distribution representing the class’ object population. 

The software still allows that classes be hierarchically structured, in which a child class 

inherits descriptions from its parent class. This arrangement of parents and children is called the 

‘class hierarchy’ and is what bears specific class descriptions. Franklin (2001) addresses the 

importance of accomplishing forest classification under a hierarchical structure. 

After testing various class hierarchies, two parent classes and three child classes were 

strategically chosen, in order to distinguish as much as possible natural forests from another type 

of vegetation, such as tillage and pasture. The parent classes were (I) forest and (II) non-forest. The 

class (II) is the inverted expression given for the class (I), such that objects not classified as forest 

turns into non-forest automatically (it is a simple option provided by eCgonition Developer 8.7). 

The child classes associated with (I) were (i) early-successional natural forests, (ii) mid- to late-

successional natural forests, and (iii) planted forests. These two classes of natural forests were 

created basing on the Resolution n. 2 from CONAMA (Brasil, 1994). Eventually it was necessary 

to create another child class for patches of lowland forests, which are generally areas wetter than 

the higher ones and consequently have different spectral response from the infra-red bands (NIR, 

SWIR1, SWIR2). 

About 10,000 ~ 20,000 samples (by scene, by class) of image objects (result from image 

segmentation) were collected to represent parent and child classes. Fig. 4 shows examples of key 

samples for interpretation of vegetation classes of this study. The software then provides 

probability distribution functions (pdfs, also called “membership functions”) to model frequency 

distribution of samples belonging to each class. These pdfs are always associated with a certain 

variable; in this research, five variables from image layers were chosen for the image classification: 

(i) brightness index, (ii) mean SWIR1, (iii) mean NIR, (iv) NDVI, and (v) maximum difference of 

the image objects. Here, brightness index plays the role of a proxy variable and is defined as the 

mean reflectance of SWIR1, NIR, and Red of an image object. This same brightness index was 

used both in the classifications through eCognition, as in the modeling described later. For the sake 

of simplicity, brightness index is just called brightness. NDVI is the Normalized Difference 

Vegetation Index usually applied in vegetation studies with remote sensing data (Powell et al., 

2010). Fig. 9 shows examples of pdfs by class used for classifying the Landsat-8 imagery.  
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FIG. 9. ECOGNITION DEVELOPER 8.7 WINDOW DISPLAYING MEMBERSHIP FUNCTIONS OF 

VARIABLES USED FOR CLASSIFYING LANDSAT-8 SCENES. 

 

Fig. 9 shows pfds manually drawn, since the software allows users easily handling pdfs 

according to the frequency distribution of the collected samples. The amount of collected samples 

by class varied from ~2,000 to 5,000, which was sufficiently large to represent each class. Since 

the pdfs are drawn based on the underlying samples, it is very important that the samples be 

sufficiently and carefully collected along the whole image.  

By following the described hierarchical structure, the classification was split into two 

phases: parent and child. The parent class (I) forest is composed by rectangular pdfs (Fig. 9) and it 

gives the maximum probability (100%) of classification to an image object located between the 

pdf limits. Likewise, the minimal probability (0%) is given to an object outside of the limits, being 

automatically classified as ‘non-forest’. The child classes, in turn, are composed by pdfs adherent 
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to the observed frequency distributions (Fig. 9). It is in this phase that image objects were then 

classified into a certain forest (child) class, basing on fuzzy logic. 

Subsequently, a post-classification visual analysis was accomplished to manually edit 

misclassified objects, allowing reaching a more assertive classification. The salt-and-pepper effect 

is unexpressive in object-oriented classifications (Blaschke, 2010) and then it had not to be 

corrected. Lastly, the accuracy of the classifications was assessed by means of the Kappa index of 

agreement, as explained by Congalton and Green (2008). The kappa value is one of the existent 

indices used for classifying the degree or strength of agreement (Landis and Koch, 1977) of 

classified imagery, as shown in Table 5. The samples of ground truth necessary to calculate the 

Kappa index were analyzed with assistance from Google Earth imagery. 

 

TABLE 5. AGREEMENT CLASSES IN RELATION TO KAPPA VALUES. 

Kappa statistic Strength of agreement 

< 0.00 Poor 

0.00 - 0.20 Slight 

0.21 - 0.40 Fair 

0.41 - 0.60 Moderate 

0.61 - 0.80 Substantial 

0.81 - 1.00 Almost perfect 

  

In fewer words, the image classification is summarized into: (i) image segmentation into 

objects, (ii) choosing of classes (parent and child ones) and their membership functions –  definition 

of the class hierarchy, (iii) collection of object samples by class, (iv) handling of the membership 

functions (or pdfs), (v) image object classification, and (vi) post-classification analysis. 

 

3.3 PIXEL-LEVEL MODELING 

 

The next step of the procedure (Fig. 7, step 6) consisted of creating two pixel-level linear 

models to be compared between them. These models were used to estimate and map wood volume 

(m³ ha-1) through data from satellite image pixel. The first model is based on surface reflectance 

values. The second model is based on latitude and longitude, fitted to be applied in the technique 

called the regression-kriging (RK). Both models were regressed with two randomly selected sub-

datasets: (i) fitting, with ~90% of data participating in the modeling, and (ii) validation, with ~10% 

of data with participation. The following sections describe the fitting procedures in detail. 
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3.3.1 Surface reflectance model (SRM) 

 

This model employs wood volume (m³ ha-1) of clusters as output variable, and surface 

reflectance values from Landsat-8 OLI bands as input variables. Fig. 10 describes the analytical 

procedure necessary for fitting the surface reflectance model (SRM). 

 
FIG. 10. ANALYTICAL PROCEDURE FOR MODELING WOOD VOLUME AT PIXEL LEVEL. 

 

To fit the SRM, a data consistency was necessary to eliminate outlier pixels (Fig. 10, step 

2) that do not represent the variable of interest, as discussed by Fazakas et al. (1999). This occurs 

because the localization of the clusters in field is not exactly the same in digital maps, due to GPS 

errors. In addition, the surface reflectance of pixels suffers influence of neighbor pixels (Maack et 

al., 2016). In this study, such influence occurs when pixel reflectance values of clusters allocated 

in the border of forests are affected by non-forested pixels (Hall et al., 2006). In this sense, upper 

and lower outlier pixels were removed from the database by using the rules [19] and [20], 

respectively. 

𝐿𝑢 = 𝑄3 + 1.5𝑖𝑟 [19]  

𝐿𝑙 = 𝑄1 − 1.5𝑖𝑟 [20] being 𝑖𝑟 = 𝑄3 − 𝑄2 

Where, 

Lu and Ll: upper and lower limit of the data range, respectively. Qi: i-th quartile.  
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The input and output variables were extracted at pixel level through GIS analysis on 

imagery (Fig. 10, step 1). The chosen OLI bands were: Red, NIR, SWIR1, SWIR2, Brightness, and 

NDVI. The stepwise method was used to select the most important input variables, leaving 

variables statistically significant (α ≤ 5%) and removing those non-significant ones. The Shapiro-

Wilk statistic for testing the normality indicated that the input variables are normally distributed at 

5% probability level. Fig. 11 shows frequency distributions of the input variables. App. 2 shows 

further samples of surface reflectance of observed natural vegetation. 

  

  

  
FIG. 11. DISTRIBUTION OF CLASSES OF SURFACE REFLECTANCE IN FORESTED PIXEL SAMPLES USED 

FOR MODELING THE TOTAL TREE VOLUME. 

 

Despite the explanatory variables follow the normal distribution (Fig. 11), satellite sensor 

data are commonly correlated (Hayashi et al., 2015). As expected, correlations of up to ~50% were 
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found among some input variables, meaning that residuals from the models may be autocorrelated 

if raw variables are used. Such condition is of especial importance because non-autocorrelation 

between residuals is an assumption of the classical linear regression model (Gujarati and Porter, 

2011). To fix that problem, the raw input variables (i.e., surface reflectance) were transformed into 

principal components (PCs), which is one of the most used transformations for satellite data (Meng 

et al., 2009) (Fig. 10, step 3). In spite of the fact that the addition of PCs enlarges the model length, 

they do not increase the statistical complexity of the models. 

In the principal components analysis (PCA), PCs with significant eigenvalues capture the 

largest amount of variance of raw data (Johnson and Wichern, 2007), therefore, only these PCs 

were used in the regression analysis. The SRM was fitted through the method of ordinary least 

squares and can be expressed by [21]: 

 

𝑉𝑖 = 𝛼0 + 𝛼1𝑃𝐶𝑖1 + 𝛼2𝑃𝐶𝑖2 + ⋯ + +𝛼𝑗𝑃𝐶𝑖𝑗 [21] 

  

in which PC is given by [22]:  

  

𝑃𝐶𝑖𝑗 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + +𝛽𝑝𝑋𝑖𝑝 [22] 

 

Where, 

V: wood volume, m³ ha-1. PC: principal component. X: raw input variable. j: number of PCs with 

λ ≥ 1. p: number of variables selected by stepwise. 𝛼𝑖: coefficients of the volume model. 𝛽𝑖: 

coefficients of the PC. 

 

As it was used seven Landsat scenes to cover the whole study area, the model [21] was 

fitted by scene (Fig. 10, step 4), using the specific set of clusters related to each scene, totaling thus 

seven SRMs. The separation by scene was necessary due to the variation of reflectance values 

among them, caused by solar illumination, haze and atmospheric conditions, among others. Fig. 12 

shows the portion covered by each Landsat scene and the portion of data for the modeling.  
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FIG. 12. COVERAGE OF LANDSAT-8 SCENES OVER THE STUDY AREA AND SPATIAL DISTRIBUTION 

OF CLUSTERS. 

  

The equations from Landsat scenes 223/076 and 223/078 were replaced by similar 

equations from bordering scenes, due to the lack of or low number of forested pixels, respectively 

(Fig. 12). With the raster files of surface reflectance data, these equations were used to estimate the 

volume at pixel level by using the raster calculator available in Envi 4.7, creating thus a raster file 

of estimated wood volume. Finally, the last step (Fig. 10, step 6) was to clip such raster files by 

using vector files stemmed from the image classifications. As these vector files delimit forest 

patches from those non-forest ones, the clipping removes all pixels out of forest.  

 

3.3.2 Regression-kriging (RK) and the RK model 

 

The regression-kriging (RK) was an alternative method tested to estimate and map wood 

volume. RK is a geostatistical, hybrid method that combines kriging with a regression-kriging 

model (RKM) (Odeh et al., 1995). The role of the RKM is to introduce regression residuals into 
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the spatial analysis (Meng et al., 2009), i.e., into the regressed and spatialized variable (i.e., wood 

volume). Here, instead of using reflectance data, volume was modeled as a function of latitude and 

longitude, which are much easier to obtain than image data. These two variables are possibly few 

correlated with wood volume, but the main idea is to take advantage of the capability of the RK 

method in fixing estimated values with addition of residuals.  Latitude and longitude were used as 

input variables in the RKM, as shown in [23]. Mello et al. (2015), Scolforo et al. (2015), and 

Angulo-Martínez et al. (2009) also employed geographical variables in RKMs. 

 

𝑉𝑖 = 𝛼0 + 𝛼1𝑋𝑖 + 𝛼2𝑌𝑖 [23] 

 

Where, 

V: wood volume of a pixel, in m³ ha-1. X: latitude of a pixel. Y: longitude of a pixel. 𝛼𝑖: coefficients 

of the RKM. 

 

The procedures to fit the RKM and execute the RK are described in the sections that follow 

and are summarized into six steps in Fig. 13. 

 

FIG. 13. ANALYTICAL PROCEDURE FOR APPLYING REGRESSION-KRIGING TO WOOD VOLUME AT 

PIXEL LEVEL. 
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The first step (Fig. 13, step 1) consists of fitting the RKM [23] with geographical variables 

as input variables, and wood volume (m³ ha-1) from pixels as output variable. The formula 𝑟𝑖 =

𝑦𝑖 − �̂�𝑖 was used to calculate the residuals (𝑟𝑖) obtained from the RKM, where 𝑦𝑖 is the observed 

wood volume and �̂�𝑖 is the wood volume estimated by the RKM. To fit the RKM, three assumptions 

were considered: 𝐸(𝑟𝑖) = 0, 𝐶𝑜𝑣(𝑟𝑖 𝑦𝑖) = 0, and 𝐶𝑜𝑣(𝑟𝑖 𝑥𝑖) = 0 (Odeh et al., 1995). 

After that, an Exponential Model (EM) [24] was fitted to the semivariogram (SV) of the 

residuals (𝑟𝑖) (Fig. 13, step 2). The EM was chosen following experiences from Scolforo et al. 

(2015). The function variofit from the GeoR package was used for fitting the semivariogram 

(Ribeiro Junior and Diggle, 2001). 

𝛾(ℎ) = τ2 + σ2 [1 − 𝑒
−(

ℎ
φ

)
] for ℎ < φ [24] 

   

𝛾(ℎ) = τ2 + σ2 for ℎ ≥ φ  

 

The spatial dependence of the regression residuals was quantified by means of the ratio 

[r(h)] [25] between nugget effect and sill. The value of r(h) was then classified into three classes 

of spatial dependence (Table 6), as proposed by Cambardella et al. (1994). 

𝑟(ℎ) =
τ2

τ2 + σ2
100 [25] 

 

Where, 

γ(h): semivariance. τ²: nugget effect. σ²: random variance. h: distance between clusters, in km. φ: 

range; 𝑒: exponential. τ² + σ²: sill of the semivariogram. 

 

TABLE 6. CLASSES OF SPATIAL DEPENDENCE OF THE VARIABLE OF INTEREST. 

Ratio - r(h) Class 

≤ 25% Strongly spatially dependent 

25% to 75% Moderately spatially dependent 

> 75% Weakly spatially dependent 

 

Once fitted, the EM was applied to spatialize the regression residuals at pixel level (Fig. 

13, step 3), in which the final product was a 30-m spatial resolution raster. Subsequently, the wood 

volume was also spatialized at pixel level (Fig. 13, step 4), but now using the RKM. To that end, a 
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vector format file containing points with latitude and longitude from each image pixel is required 

for the wood volume estimation. This operation also produces a 30-m spatial resolution raster. The 

software ArcGis (v. 10.3) was the main auxiliary tool in these described steps. 

The two raster files created in the steps 3 and 4 were added to each other aiming to sum, at 

pixel level, regression residuals and estimated wood volumes (Fig. 13, step 5). This operation was 

performed with the raster calculator available in ArcGis. The final step (Fig. 13, step 6) is similar 

to the step 6 developed in the last model (Fig. 10). 

 

3.4 SRM FOR ESTIMATING FOREST BIOMASS AND CARBON 

 

After estimating tree biomass and carbon through equations shown in Table 2, the same 

procedures performed for the wood volume (section [3.3.1]) were applied for the forest biomass 

and carbon. Thus, surface reflectance models (SRMs) for estimating forest biomass [26] were fitted 

by Landsat scene, with pixel reflectance values transformed into PCs. 

 

𝑌𝑖 = 𝛼0 + 𝛼1𝑃𝐶𝑖1 + 𝛼2𝑃𝐶𝑖2 + ⋯ + 𝛼𝑗𝑃𝐶𝑖𝑗 [26] 

  

in which PC is given by:  

  

𝑃𝐶𝑖𝑗 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝  

 

Where, 

Y: forest biomass / forest carbon, Mg ha-1. PC: principal component. X: raw input variable. j: 

number of PCs with λ ≥ 1. p: number of variables selected by stepwise. 𝛼𝑖: coefficients of the 

model. 𝛽𝑖: coefficients of the PC. 

 

3.5 ASSESSMENT OF GOODNESS OF FIT 

 

Goodness-of-fit statistics were applied to the height-diameter models [11], and pixel-level 

models [21], [23], and [26], in order to examine their accuracy. As the SRMs were fitted by scene, 

to evaluate the accuracy of the global volume estimation, such statistics were proportionally 
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weighed in relation to the portion which each Landsat scene covers on the study area (Fig. 12). The 

accuracy statistics were: adjusted coefficient of determination [27], root mean square error [28], 

relative RMSE [29], mean error [30], and absolute mean error [31]: 

 

𝑅𝑎𝑑𝑗.
2 = 1 − [

∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1

(
𝑛 − 1

𝑛 − 𝑝
)] [27] 

  

𝑅𝑀𝑆𝐸 =
1

𝑛 − 𝑝
[∑ (𝑦𝑖 − �̂�𝑖)²

𝑛

𝑖=1
]

1
2
 [28] 

  

𝑅𝑀𝑆𝐸(%) = 𝑅𝑀𝑆𝐸
100

�̅�
 [29] 

  

𝑀𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1
 [30] 

  

𝐴𝑀𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1
 [31] 

 

Where: 

𝑅𝑎𝑑𝑗.
2 : adjusted coefficient of determination. RMSE: root mean square error. ME: mean error. 

AME: absolute mean error. 𝑦: observed volume. �̂�: predicted volume. �̅�: mean observed volume. 

n: number of observations. p: number of parameters. 

 

3.6 EXTRAPOLATION OF WOOD VOLUME 

 

3.6.1 Extrapolation at a coarse scale 

 

After estimating volume at tree level and then volume by unit area (m³ ha-1), wood volume 

was extrapolated to non-sampled areas at a coarse scale (Fig. 7, step 7a). This step consists of 

directly extrapolating wood volume estimated in the clusters, to the area that each cluster 

represents. For entirely forested clusters, such represented area is 400 km². For partially forested 
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clusters, such represented area is the proportional to the cluster’s forested area; for example, if a 

cluster is 50% into forest, its represented area is 200 km². For non-forested clusters, its represented 

area is 0 km² and consequently the extrapolation is set to 0. 

 

3.6.2 Extrapolation at a coarse scale supported by image classification 

 

The procedure of directly extrapolating wood volume estimated in clusters to their 

represented areas (section 3.6.1) is the simplest way to obtain totals for the study area. Here is 

proposed embedding image classification [section 3.2.2 (ii)] to that method of direct extrapolation. 

The map of forested and non-forested areas stemmed from the image classification is required. The 

forested area by cluster was quantified by clipping such map into 152 ~400-km² pieces, which are 

the represented area of each cluster. 

This alternative supported by image classification then consists of extrapolating the wood 

volume (m³ ha-1) estimated in the clusters to the classified forested area (ha) corresponding to each 

cluster. Volume equal to zero was assigned to represented areas from non-forested clusters. The 

total volume is the sum of the extrapolated wood volume by cluster. 

 

3.6.3 Extrapolation at a fine scale 

 

To extrapolate wood volume at fine scale (Fig. 7, step 7b), modeling and remotely sensed 

data were combined. Instead of directly extrapolating the variables to non-sampled areas, as in the 

coarse-scale case, methods of image interpretation were employed, in order to both delimit forested 

patches along the study area, as to estimate such variables at pixel level. The wood volume was 

firstly estimated at pixel level by means of the SRM and RK, described in section [3.3]. Each of 

these methods allowed me to obtain wood volume for the whole study area. Capabilities to 

extrapolating the wood volume at a coarse scale was compared with the results of a finer scale 

(section [3.6.1]). Such comparison consisted of verifying if wood volume, estimated by the 

methods that use Landsat image data, fits into the confidence interval estimated by the method 

without imagery applications (i.e., coarse scale). The procedure for estimating the confidence 

interval for the NFI data was explained in the section [3.2.1 (iii)]. 
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4. RESULTS 

 

4.1 ESTIMATION OF TREE VARIABLES 

 

Table 7 shows the height-diameter equations fitted for each stratum of h/d. Table 8 gives 

goodness-of-fit statistics obtained from the height-diameter models fitted to each stratum of 

height/diameter ratio (h/d). The values of RMSE for the total (1.91 m, or 17.1%) fit into the 

expected errors found in the literature. The values of ME and AME indicate a great accuracy; ME 

for the total was close to zero, indicating overall unbiased estimates, and AME reveals an error of 

1.49 m for the total database. 

 

TABLE 7. EQUATIONS APPLIED TO ESTIMATE TREE HEIGHT IN FORESTED CLUSTERS. 

Height-diameter equations Specificity 

   

ℎ − 1.3 =
𝐷𝑏ℎ2

(1.3289 + 0.19069𝐷𝑏ℎ)²
 

Stratum 1: 

0.2 ≤ h/d < 0.7 

   

ℎ − 1.3 =
𝐷𝑏ℎ2

(1.2764 + 0.21369𝐷𝑏ℎ)²
 

Stratum 2: 

0.7 ≤ h/d < 1.2 

   

ℎ − 1.3 =
𝐷𝑏ℎ2

(1.3049 + 0.2000𝐷𝑏ℎ)²
 

Stratum 3: 

1.2 ≤ h/d < 1.7 

   

ℎ − 1.3 =
𝐷𝑏ℎ2

(1.2529 + 0.22881𝐷𝑏ℎ)²
 

Stratum 4: 

h/d ≥ 1.7 

   

Dbh: diameter at breast height (over-bark), in cm. h: tree total height, in m. h/d: height/ diameter ratio. 

 

TABLE 8. STATISTICS OF GOODNESS OF FIT FOR THE FITTED HEIGHT-DIAMETER MODELS. 

Stratum Radj.
2  RMSE* RMSE(%) ME* AME* DF 

0.2 ≤ h/d < 0.7 0.68 2.66 26.0% -0.04 2.05 580 

0.7 ≤ h/d < 1.2 0.76 1.87 14.5% 0.01 1.50 176 

1.2 ≤ h/d < 1.7 0.93 1.12 8.5% 0.01 0.89 510 

h/d ≥ 1.7 0.94 0.88 7.0% 0.01 0.72 28 

Overall 0.80 1.91 17.1% -0.01 1.49 1,294 

* Value given in m. RMSE: Root mean square error. ME: Mean error. AME: Absolute mean error. DF: Degrees of 

freedom. 

 

Fig. 15 shows scatter plots of the residuals by stratum of h/d. As previously noted with the 

values of ME (Table 8), the plots show that, in general, the models provided unbiased residuals 

along the input variable Dbh for all strata. 
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FIG. 14. PLOT OF RESIDUALS FROM THE HEIGHT-DIAMETER MODELING APPLIED TO THE STRATA 

(A) STRATUM 1, (B) STRATUM 2, (C) STRATUM 3, (D) STRATUM 4. DBH: DIAMETER AT BREAST 

HEIGHT. SEE STRATUM SPECIFICATIONS IN TABLE 7.  

 

Unlike the heights of trees, the variables volume of stem, tree biomass and carbon were 

estimated by equations taken from literature. Fig. 16 shows estimates of these three variables, 

related to the diameter at breast height (Dbh). 

 

FIG. 15. ESTIMATION OF STEM VOLUME (A), TOTAL TREE BIOMASS (B) AND TOTAL TREE CARBON 

(C). 

 

 As the NFI’s database does not provide observed volume of the stems, neither biomass and 

carbon of trees, unfortunately it is not possible evaluate the accuracy of these three variables. 

However, Fig. 16 shows that the estimated values by tree were coherent, with normal factor form 

ranging from 0.4579 to 0.7284, with average of 0.5536. 
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4.2 PIXEL-LEVEL ESTIMATES OF WOOD VOLUME 

 

After estimating stem volumes at tree level (m³) and wood volume at stand level (m³ ha-1), 

two pixel-level methods for estimating wood volume were tested. The first of them, the SRM, is a 

linear model that uses, as input variables, surface reflectance values from Landsat-8 OLI bands, 

whose reflectances were transformed into Principal Components (PCs). Table 9 shows regression 

coefficients from this linear model fitted to each satellite scene, as well as their associated PCs. 

The second pixel-level model for estimating wood volume, the RKM, is a preliminary step 

for the RK technique that spatialize the regression residuals of the variable of interest (i.e., wood 

volume). Regression coefficients from the RKM are presented at the bottom of Table 9. The 

assumptions 𝐸(𝑟𝑖) = 0, 𝐶𝑜𝑣(𝑟𝑖 𝑦𝑖) = 0, and 𝐶𝑜𝑣(𝑟𝑖 𝑥𝑖) = 0 were met (Odeh et al., 1995). 

 

TABLE 9. REGRESSION COEFFICIENTS OF PIXEL-LEVEL MODELS OF WOOD VOLUME AND 

ASSOCIATED PRINCIPAL COMPONENTS OF LANDSAT-8 OLI BANDS. 

Surface reflectance model 

Scene Final equation 

221/077 V = 638.15341 - 0.27073 PC1 + 0.49191 PC2 

221/078 and 

223/076 

V = 167.8204 - 0.70919 PC1 

222/077 and 

223/078 

V = 175.51159 - 0.09704 PC1 - 0.65708 PC2 

222/078 V = 94.30008 + 0.04800 PC1 - 0.12708 PC2 + 3.87062 PC3 

223/077 V = 44.18151 - 2.77950 PC1 + 4.33302 PC2 

Scene Principal Component 

221/077 PC1: 0.99703 NIR + 0.07707 SWIR1 

 PC2: -0.07707 NIR + 0.99703 SWIR1 

221/078 and 

223/076 

PC1: 0.98484 Red - 0.13166 SWIR1 + 0.11294 SWIR2 

222/077 and 

223/078 

PC1: 0.91761 Brightness + 0.39749 SWIR2 

 PC2: -0.39749 Brightness + 0.917607 SWIR2 

222/078 PC1: 0.36164 Brightness + 0.91678 NIR + 0.16950 SWIR1 

 PC2: 0.28390 Brightness - 0.28146 NIR + 0.91662 SWIR1 

 PC3: 0.88804 Brightness - 0.28336 NIR - 0.36206. SWIR1 

223/077 PC1: -0.04918 Brightness - 0.00011 NDVI + 0.01766 NIR - 0.3610 SWIR1 + 0.9311 SWIR2 

 PC2: 0.90197 Brightness - 0.00187 NDVI - 0.30130 NIR - 0.30261 SWIR1 - 0.06398 SWIR2 

Scene Principal Component Eigenvalue Cumulative variance (%) 

221/077 PC1 55,710.9 89.3 

 PC2 6,698.2 100.0 

221/078 and 

223/076 

PC1 47,453.0 97.9 

222/077 and 

223/078 

PC1 37,204.1 95.8 

 PC2 1,635.6 4.2 

222/078 PC1 131,862.0 92.7 

 PC2 10,398.2 7.2 
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 PC3 40.0 0.1 

223/077 PC1 6,8714.0 95.9 

 PC2 2,817.8 99.8 

Regression-kriging model 

Total area V = 1051.51885 - 0.00031 Lat - 0.00011 Long 

V: wood volume, m³ ha-1. PC: principal component. NIR: near infra-red. SWIR: short-wave infra-red. NDVI: 

normalized difference vegetation index. Lat: latitude. Long: longitude. 

 

 Table 10 gives goodness-of-fit statistics from the SRMs and RKM. With the low variation 

of the statistics between the fitting and validation datasets, the results indicate that the regression 

coefficients were accurately estimated and can be applied without loss of accuracy. However, the 

equations associated with the scenes 221/077 and 223/077 were fitted with a small database and 

therefore they have limited applications to other studies. Particularly to this research, such scenes 

have a small coverage over the study area (Fig. 12); therefore, the equations associated to them 

have low contribution (3.4% and 5.4%, respectively, Table 10) in the average accuracy. 

 

TABLE 10. STATISTICS OF GOODNESS OF FIT FOR PIXEL-LEVEL MODELS OF VOLUME, AND WEIGHTS 

ASSOCIATED TO COVERAGE OF LANDSAT-8 SCENES. 

Surface reflectance model 

Scene Dataset Radj.
2  RMSE* RMSE% ME* AME* DF w (%) 

221/077 
Fitting 0.61 59.22 30.7% 0.00 46.33 41 

3.4% 
Validation 0.59 67.16 31.5% 18.78 37.64 4 

221/078 and 223/076 
Fitting 0.11 28.53 27.4% 0.00 20.73 299 

24.3% 
Validation 0.10 32.45 33.0% -5.64 23.86 43 

222/077 and 223/078 
Fitting 0.33 45.82 39.3% 0.00 36.56 283 

23.0% 
Validation 0.32 53.22 41.8% 12.35 41.10 36 

222/078 
Fitting 0.39 40.10 28.9% 0.00 33.08 542 

44.0% 
Validation 0.39 42.63 29.0% 9.86 34.59 77 

223/077 
Fitting 0.22 59.16 41.9% 0.00 49.53 66 

5.4% 
Validation 0.18 55.31 51.0% 8.73 36.08 7 

Total area 
Fitting 0.43 41.94 32.5% -1.57 33.05 1,231 

100% 
Validation 0.46 42.37 32.3% -6.84 33.53 167 

Regression-kriging model 

Total area 
Fitting 0.11 53.36 49.0% 0.00 41.55 60 

100% 
Validation 0.11 41.78 47.2% -13.23 26.57 10 

* Value given in m³ ha-1. RMSE: Root mean square error. ME: Mean error. AME: Absolute mean error. DF: degrees 

of freedom. w: weight of coverage. 

 

To the SRM, DF indicate the number of pixels taken from the areas occupied by forested 

clusters, minus the number of parameters of the model. To the RKM, DF was reduced to 60 (and 

10, for validation) because each cluster have only one geographical location, which is its midpoint 

(Table 10). 
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The RKM had accuracy worse than the SRM (Table 10), however, it is important to 

highlight that this model is not used to directly estimate wood volume. Instead, estimated volumes 

and their respective regression residuals are spatialized and added each other in order to obtain the 

final estimated wood volume. Fig. 17a and 17c shows plotting of estimated and observed volumes 

for the total database, for both tested models. Fig. 17b and 17d shows the histogram of the 

regression residuals along with the normal curve.  

 

FIG. 16. PLOTTING OF ESTIMATED OVER OBSERVED VOLUMES (A AND C) AND HISTOGRAM OF 

RESIDUALS OF VOLUME ESTIMATES (B AND D). RED LINE: NORMAL DISTRIBUTION CURVE. 

 

Fig. 17a reveals that the SRM had a moderate tendency in overestimating the lower values 

of wood volume and underestimating the higher ones. Estimates from the RKM, in turn, presented 

estimates seemingly dependent from at most one input variable, which was latitude (p-value > 

0.05). However, a good accuracy of this analysis depends mainly on residuals (of the RKM) 

normally distributed, once normality is a condition necessary to apply the RK technique (Odeh et 

al., 1995). 
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In a visual analysis, Fig. 17b and 17d reveal a distribution of the regression residuals very 

close to the normality and it aligns with the values of ME (Table 10), in which positive and negative 

residuals nullify themselves, so that the overall ME is a tiny value around zero. The Shapiro-Wilk 

test confirms that the residuals from both models are normally distributed at 95% probability level. 

In addition to the normality, another issue of greater importance for the application of the 

RKM is that the regression residuals have spatial dependence further than ~20 km, which is the 

minimum distance among clusters. The practical asymptotic range (95% of the sill) of the EM, 

which is equal to three times the value of range (φ) (Wackernagel, 2003), was of 269.6 km, meaning 

that there is spatial dependence until such distance. With this result, the residuals can be properly 

spatialized with the NFI grid distance. By following the Formula [25] and classes from Table 6, 

residuals were classified as moderately spatially dependent (r(h) = 55.32%). The equation of the 

semivariogram is expressed in [32]. 

 

𝛾(ℎ) = 16.3804 + 13.2294 [1 − 𝑒
−(

ℎ
90,000

)
] [32] 

Where, 

γ(h): semivariance. h: distance between clusters. e: exponential. 

 

4.3 PIXEL-LEVEL ESTIMATES OF FOREST BIOMASS AND CARBON 

 

After estimating total biomass and carbon at tree and stand levels (Mg ha-1), the SRM was 

applied to estimate these variables at pixel level, as accomplished for wood volume (section [4.2]). 

As proposed in the methodology, carbon was directly estimated by a ratio of biomass-carbon = 

0.41 (Table 2). The RK method was not tested here, as for volume (section [4.2]). Regression 

coefficients from the reflectance model and from the PCs are presented in Table 11. 

 

TABLE 11. REGRESSION COEFFICIENTS OF PIXEL-LEVEL MODELS FOR BIOMASS AND CARBON, AND 

ASSOCIATED PRINCIPAL COMPONENTS OF LANDSAT-8 OLI BANDS. 

Scene Final equation 

221/077 Bm = 512,194.85908 - 217.12670 PC1 + 404.56031 PC2 / C = 0.41 Bm 

221/078 and 

223/076 

Bm = 138,297.46773 - 8.79914 PC1 + 37.16360 PC2 / C = 0.41 Bm 

222/077 and 

223/078 

Bm = 190,136.4365 - 107.03014 PC1 - 600.65401 PC2 / C = 0.41 Bm 

222/078 Bm = 114,958.7886 + 30.73977 PC1 - 83.48692 PC2 / C = 0.41 Bm 
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223/077 Bm = 95,020.79487 + 38.47558 PC1 - 111.54384 PC2 - 735.56314 PC3 / C = 0.41 Bm 

Scene Principal Component 

221/077 PC1: 0.99703 NIR + 0.07707 SWIR1 

 PC2: - 0.07707 NIR + 0.99703 SWIR1 

221/078 and 

223/076 

PC1: 0.05796 Red + 0.72880 SWIR1 + 0.38012 SWIR2 + 4.93E-07 NDVI + 0.56657 Brightness 

 PC2: -0.05638 Red + 0.37664 SWIR1 + 0.47177 SWIR2 - 0.00006 NDVI - 0.79524 Brightness 

222/077 and 

223/078 

PC1: 0.91691 Brightness + 0.39909 SWIR2 

 PC2: - 0.39909 Brightness + 0.91691 SWIR2 

222/078 PC1: - 0.00430 Red + 0.93232 NIR + 0.01194 SWIR2 + 0.00007 NDVI + 0.36143 Brightness 

 PC2: 0.31315 Red - 0.17400 NIR + 0.83123 SWIR2 - 0.00023 NDVI + 0.42510 

Brightness 

223/077 PC1: 0.05386 Red + 0.49415 SWIR1 + 0.19831 SWIR2 + 0.00003 NDVI + 0.84474 

Brightness 

 PC2: 0.05070 Red + 0.77847 SWIR1 + 0.32462 SWIR2 - 0.00010 NDVI - 0.53482 

Brightness 

 PC3: 0.73922 Red - 0.30507 SWIR1 + 0.60033 SWIR2 - 0.00042 NDVI - 0.00960 Brightness 

Scene Principal Component Eigenvalue Cumulative variance (%) 

221/077 PC1 55,710.9 89.3 

 PC2 6,698.2 100.0 

221/078 and 

223/076 

PC1 66,541.2 89.2 

 PC2 7,500.1 99.3 

222/077 and 

223/078 

PC1 37,204.1 95.8 

 PC2 1635,62 100.0 

222/078 PC1 128,533.0 94.8 

 PC2 6,597.4 99.7 

223/077 PC1 12,443.1 88.2 

 PC2 1,435.2 98.3 

 PC3 143.2 99.4 

Bm: forest biomass, Mg ha-1. C: forest carbon, Mg ha-1. PC: principal component. NIR: near infra-red. SWIR: short-

wave infra-red. NDVI: normalized difference vegetation index. 

 

Table 12 and Table 13 give, respectively, goodness-of-fit statistics from the SRMs fitted to 

biomass and carbon, to each Landsat scene. 

 

TABLE 12. STATISTICS OF GOODNESS OF FIT FOR PIXEL-LEVEL MODELS FOR BIOMASS, AND 

WEIGHTS ASSOCIATED TO COVERAGE OF LANDSAT-8 SCENES. 

Scene Dataset Radj.
2  RMSE* RMSE% ME* AME* DF w (%) 

221/077 
Fitting 0.63 45,776.67 27.3% 0.00 35,713.43 41 

3.4% 
Validation 0.62 40,372.97 26.8% 12,253.03 33,454.62 4 

221/078 and 223/076 
Fitting 0.02 26,217.43 26.6% 0.00 20,143.75 299 

24.3% 
Validation 0.01 26,210.96 27.3% -3,059.96 21,261.50 43 

222/077 and 223/078 
Fitting 0.42 37,260.77 35.6% 0.00 31,131.66 283 

23.0% 
Validation 0.41 38,746.82 38.8% -4,376.26 32,412.92 36 

222/078 
Fitting 0.09 41,019.99 31.3% 0.00 34,864.16 542 

44.0% 
Validation 0.08 38,063.67 30.3% -5,244.76 33,435.83 77 

223/077 
Fitting 0.05 48,902.19 39.3% 0.00 43,771.85 66 

5.4% 
Validation 0.05 42,379.61 35.2% -3,998.16 38,509.64 7 

Total area Fitting 0.35 37,500.13 31.7% 0.00 30,979.30 1,231 100% 
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Validation 0.34 35,767.86 31.7% -4,017.89 30,239.97 167 

* Value given in Mg ha-1. RMSE: Root mean square error. ME: Mean error. AME: Absolute mean error. DF: degrees 

of freedom. w: weight of coverage. 

 

TABLE 13. STATISTICS OF GOODNESS OF FIT FOR PIXEL-LEVEL MODELS FOR CARBON, AND 

WEIGHTS ASSOCIATED TO COVERAGE OF LANDSAT-8 SCENES. 

Scene Dataset Radj.
2  RMSE* RMSE% ME* AME* DF w (%) 

221/077 
Fitting 0.63 18,768.43 27.3% 0.00 14,642.51 41 

3.4% 
Validation 0.62 16,552.92 26.8% 5,023.74 13,716.39 4 

221/078 and 223/076 
Fitting 0.02 10,749.15 26.6% 0.00 8,258.94 299 

24.3% 
Validation 0.01 10,746.49 27.3% -1,254.58 8,717.22 43 

222/077 and 223/078 
Fitting 0.42 15,276.92 35.6% 0.00 12,763.98 283 

23.0% 
Validation 0.41 15,886.20 38.8% -1,794.27 13,289.30 36 

222/078 
Fitting 0.09 16,818.20 31.3% 0.00 14,294.31 542 

44.0% 
Validation 0.08 15,606.10 30.3% -2,150.35 13,708.69 77 

223/077 
Fitting 0.05 20,049.90 39.3% 0.00 17,946.46 66 

5.4% 
Validation 0.05 17,375.64 35.2% -1,639.25 15,788.95 7 

Total area 
Fitting 0.35 15,375.05 31.7% 0.00 12,701.51 1,231 

100% 
Validation 0.34 14,664.82 31.7% -1,647.33 12,398.39 167 

* Value given in Mg ha-1. RMSE: Root mean square error. ME: Mean error. AME: Absolute mean error. DF: degrees 

of freedom. w: weight of coverage. 

 

In general, the SRMs fitted for biomass (Table 12) and carbon (Table 13) also had an 

acceptable performance, aligned with biomass and carbon surveys. As in the volume models, the 

validation analysis also confirms the great performances of the biomass and carbon models. 

Fig. 18a shows plot of estimated and observed forest biomass for the total database. Fig. 

18b shows the histogram of residuals of the estimates along with the normal curve. Plots for the 

variable carbon are not presented because they have the same behavior as biomass. 

 

FIG. 17. PLOTTING OF ESTIMATED OVER OBSERVED BIOMASS (A) AND HISTOGRAM OF RESIDUALS 

OF BIOMASS ESTIMATES (B). RED LINE: NORMAL DISTRIBUTION CURVE. 
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4.4 IMAGE SEGMENTATION AND CLASSIFICATION 

 

The image segmentation process provided by eCognition Developer 8.7 resulted in so 

homogeneous objects, in some cases, that the smallest objects reached size of up to one pixel. Fig. 

19 shows samples of results of the image segmentation and classification in three common land-

uses in the State of Parana.  

Unprocessed image Segmented image Classified image 

Area dominated by forest 

   
Area dominated by exposed soil 

   
Area dominated by tillage and planted forest 

   
FIG. 18. SAMPLES OF IMAGE SEGMENTATION AND CLASSIFICATION OF LANDSAT-8 SCENES IN THE 

STATE OF PARANA. GREEN PATCHES: MID- TO LATE-SUCCESSIONAL FORESTS. RED PATCHES: 

EARLY-SUCCESSIONAL FORESTS. BLUE PATCHES: PLANTED FORESTS. YELLOW PATCHES: NON-

FORESTED AREAS. BLUE LINES: DELIMITATION OF OBJECTS (SEGMENTATION). 



78 

 

 

 

 

The results obtained in the image segmentation indicate that the adopted parameters and 

weighs of image layers satisfied a high-quality pattern of segmentation. Accurate results also were 

obtained in the image classification; as shown in Table 14, kappa values ranged from 0.81 to 0.90, 

which correspond to almost perfect agreement (Table 5).  

 

TABLE 14. CONFUSION MATRIX OF THE IMAGE CLASSIFICATIONS BY LANDSAT SCENE. 

221/077 (kappa = 0.86) 221/078 (kappa = 0.81) 

Class PF ESF MLSF NF Total Class PF ESF MLSF NF Total 

PF 32 3 2 1 38 PF 27  1 1 29 

ESF 1 24 2  27 ESF  23 1 4 28 

MLSF 2 1 26  29 MLSF   28  28 

NF  2  34 36 NF 3 7  25 35 

Total 35 30 30 35 130 Total 30 30 30 30 120 

222/077 (kappa = 0.86) 222/078 (kappa = 0.87) 

Class PF ESF MLSF NF Total Class PF ESF MLSF NF Total 

PF 28  1  29 PF 29  2 1 32 

ESF  23   23 ESF  24 1  25 

MLSF 1  26  27 MLSF 1  26  27 

NF 1 7 3 30 41 NF  6 1 29 36 

Total 30 30 30 30 120 Total 30 30 30 30 120 

223/076 (kappa = 0.90) 223/077 (kappa = 0.90) 

Class PF ESF MLSF NF Total Class PF ESF MLSF NF Total 

PF 27    27 PF 26    26 

ESF 3 28 2 1 34 ESF  28 2  30 

MLSF  2 27  29 MLSF 4  27  31 

NF   1 29 30 NF  2 1 30 33 

Total 30 30 30 30 120 Total 30 30 30 30 120 

223/078 (kappa = 0.86)       

Class PF ESF MLSF NF Total       

PF 28    28       

ESF  22  1 23       

MLSF 2  28  30       

NF  8 2 29 39       

Total 30 30 30 30 120       

PF: Planted forests. ESF: Early-successional forests. MLSF: Mid- to late-successional forests. NF: Non-forest. 

 

Fig. 20 and appendices 3 to 6 show further samples of results of the image classifications. 

As the image segmentation attained a high level of refinement (Fig. 19), it is possible to recognize 

fine details along the classified imagery, such as tracks of main roads, electrical transmission lines, 

narrow patches of riparian forests, and waterways crossing forests (Fig. 20, appendices 3 to 6).  
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FIG. 19. SAMPLES OF IMAGE CLASSIFICATION OF LANDSAT-8 SCENE (221/77) IN THE STATE OF 

PARANA. GREEN PATCHES: MID- TO LATE-SUCCESSIONAL FORESTS. RED PATCHES: EARLY-

SUCCESSIONAL FORESTS. BLUE PATCHES: PLANTED FORESTS. YELLOW PATCHES: NON-FORESTED 

AREAS. 

 

Misclassifications occurred mainly due to early-successional forests be erroneously 

classified as non-forest (e.g., tillage, pasture), and vice versa, followed by shadow effects, and 

planted forest be misclassified as mid- to late-successional forest, and vice-versa. Most of the 

misclassifications due to shadow effects occurred in the south of the study area, where is the most 

mountainous areas. Such regions had more manual edits on classification. 
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Fig. 21 provides the result of image classification for the study area, as well as presents a 

ground slope map originated from SRTM (30-m spatial resolution) available on the internet.  

 
FIG. 20. SPATIAL DISTRIBUTION OF EARLY-SUCCESSIONAL AND MID- TO LATE-SUCCESSIONAL 

FORESTS AND GROUND SLOPE IN PART OF THE STATE OF PARANA. 

 

The total area classified as ‘early-successional forest’ and ‘mid- to late-successional forest’ 

(Fig. 21) were 432,528 ha and 1,330,041 ha, respectively. These two classes combined totalize 

1,762,569 ha of forested area. Estimates from the current decade indicate that the Atlantic Forest 

biome shelters only 11.3% of its original forest area, i.e., 88.7% has been lost to other land uses 

(Ribeiro et al., 2009). The findings indicate that 31.7% of the study area is still covered by natural 
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forest; almost three times the average of the biome Atlantic Forest. As shown in Fig. 21, the most 

deforested regions are in the North, Northwest, and Mid-west of the study area. Fig. 22 

approximates the scale for better visualizing the classifications in the North/Northwest, and Fig. 

23 approximates for the mid-west region. 

 
FIG. 21. LAND-USE AND CLASSIFICATION IN THE NORTHERN REGION OF THE STUDY AREA. GREEN 

PATCHES: MID- TO LATE-SUCCESSIONAL FORESTS. RED PATCHES: EARLY-SUCCESSIONAL 

FORESTS. 

 

Reports from Agriculture and Supply Department (SEAB, 2017) point out that these 

regions (North, Northwest, and Mid-west) had large portions of lands devoted to crops as soybeans, 

corn, sugarcane, among others. As example, over the 2014-2015 period, the whole State of Parana 

designated more than 10.6 million ha to agricultural crops, from which ~1.1 million ha came from 

21 counties highlighted in Fig. 22 and Fig. 23. In addition, six of the 25 most productive (in terms 

of agriculture) counties belong to these highlighted regions, being: Mamborê (9th most productive), 

Campo Mourão (16th), Luiziana (18th), and Rocandor (24th), in the Northern region (Fig. 22), 

besides Guarapuava (5th), and Candói (15th), in the Mid-west of the study area (Fig. 23). 
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FIG. 22. LAND-USE AND CLASSIFICATION IN THE MID-WEST REGION OF THE STUDY AREA. GREEN 

PATCHES: MID- TO LATE-SUCCESSIONAL FORESTS. RED PATCHES: EARLY-SUCCESSIONAL 

FORESTS. 

 

Another reason for these regions be the most deforested is by being in flat grounds. The 

maps shown in Fig. 21 indicate a strong relation between natural forest coverage and ground slope. 

This is specially evidenced in the regions pointed in Fig. 22 and Fig. 23, whose ground slopes are 

slighter. On the other hand, the South and the East appear as the most forested regions and are 

across the sharper reliefs (Fig. 24). Therefore, most of the manual edits were made in these declined 

regions, in order to fix misclassifications of very shadowed and darker image objects. 

Two of the most important Parana’s conservation units (CUs) are located in these regions: 

‘Área de Proteção Ambiental da Serra da Esperança’, occupying an area of ~206,555 ha, and 

‘Reserva Biológica das Araucárias’, with 14,930 ha. Fig. 24 approximates the scale for better 

visualizing the land use and classification in the southern region. 
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FIG. 23. LAND-USE AND CLASSIFICATION IN THE SOUTHERN REGION OF THE STUDY AREA. GREEN 

PATCHES: MID- TO LATE-SUCCESSIONAL FORESTS. RED PATCHES: EARLY-SUCCESSIONAL 

FORESTS. 

 

4.5 COARSE-SCALE ESTIMATION OF WOOD VOLUME 

 

4.5.1 Extrapolation unsupported by image classification 

 

As proposed, the coarse-scale estimation consisted of directly extrapolating wood volume 

(m³ ha-1) observed in clusters, to the area that each cluster represents, i.e., ~400 km². Table 15 gives 

sampling error (obtained through MFD, adapted from Chacko, 1965), totals, and other main results 

of the wood volume. Table 15 also shows frequency by type of cluster and their represented area, 

i.e., 400 km² each. The extrapolated forested area (EFA) means the proportion of forest found in 

the cluster extrapolated to its represented area. Total volume was obtained by multiplying mean 

volume and EFA.  
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TABLE 15. MAIN SAMPLING STATISTICS FOR THE VARIABLE WOOD VOLUME, WITH 

EXTRAPOLATION OF TOTALS UNSUPPORTED BY IMAGE CLASSIFICATION.  

Statistics Unit 

Type of cluster 

Entirely 

forested (A) 

Partially 

forested (B) 

(C) Non- 

Forested 

Total 

(A+B) 

Frequency* 
absolute 7 89 56 96 

% 4.6% 58.6% 36.8% 63.2% 

Represented 

area 

ha 280,000 3,560,000 2,240,000 3,840,000 

% 4.6% 58.6% 36.8% 63.2% 

Extrapolated 

forested area 

ha 280,000 1,707,000 0.0 1,987,000 

% 14.1% 85.9% 0.0% 100.0% 

Sampling 

error 

m³ ha-1 18.0 15.8 - 13.6 

% 8.3% 19.8% - 14.7% 

C
o

n
fi

d
en

ce
 

in
te

rv
al

 (
5

%
) Lower limit m³ ha-1 198.6 64.3 - 84.8 

Mean m³ ha-1 216.6 80.1 - 99.3 

Upper limit m³ ha-1 234.6 96.0 - 113.9 

Lower limit m³ 55,603,212 109,703,290 - 168,468,681 

Total m³ 60,639,475 136,757,044 - 197,396,518 

Upper limit m³ 65,675,737 163,810,798 - 226,324,356 

*Total frequency of forested and non-forested clusters (A+B+C) = 152 (100%).  

 

4.5.2 Extrapolation supported by image classification 

 

As a second alternative of extrapolating wood volume at coarse scale, the extrapolation 

supported by image classification is more complex than the first alternative, by requiring remote 

sensing applications. Total volume is obtained by multiplying mean volume and forested area 

delimited by image classification (FADIC), instead of multiplying by the EFA, as in the first case. 

Table 16 shows the FADIC and total volume by type of cluster. 

 

TABLE 16. MAIN SAMPLING STATISTICS FOR THE VARIABLE WOOD VOLUME, WITH 

EXTRAPOLATION OF TOTALS SUPPORTED BY IMAGE CLASSIFICATION.  

Statistics Unit 

Type of cluster 

Entirely 

forested (A) 

Partially 

forested (B) 

(C) Non- 

Forested 

Total 

(A+B+C) 

Frequency 
absolute 7 89 56 152 

% 4.6% 58.6% 36.8% 100.0% 

Forested area delimited 

by image classification 

ha 97,987 1,186,667 477,916 1,762,569 

% 5.6% 67.3% 27.1% 100.0% 

Total m³ 21,060,437 89,952,970 - 111,013,407 

 

Fig. 25 illustrates the spatial distribution of wood volume by cluster, and the area occupied 

by each one. 
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FIG. 24. SPATIAL DISTRIBUTION OF WOOD VOLUME BY EACH CLUSTER. 

 

4.6 FINE-SCALE ESTIMATION OF WOOD VOLUME 

 

By means of the SRMs, estimation of mean wood volume was of ~123.7849 m³ ha-1 (or 

10.8099 m³ pixel-1, where 1 pixel = 900 m²); considering the total forested area of 1,762,569 ha 

observed for the whole study area (Fig. 26), the total wood volume is of 210,961,589 m³. With the 

RK geostatistical method, in turn, the mean volume was of ~115.7 m³ ha-1 (or 10.4109 m³ pixel-1) 

and 203,326,674 m³ for the study area. As each of these methods (linear regression and regression-

kriging) estimated wood volume at pixel level, the frequency distribution of pixels is presented in 

classes of volume in Fig. 26. 
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FIG. 25. FREQUENCY OF PIXELS VERSUS CLASSES OF WOOD VOLUME ESTIMATED BY PIXEL-LEVEL 

METHODS OF MAPPING. 

 

The method that uses surface reflectances as input variables produced a frequency of 

volumes much closer to a normal distribution than the regression-kriging method. In addition, this 

geostatistical method failed in estimating volume of pixels in extreme classes. The spatial 

distribution of the wood volume (m³ ha-1) estimated through the SRM and RK, are shown in Fig. 

27 and Fig. 28, respectively. 
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FIG. 26. SPATIAL DISTRIBUTION OF TOTAL TREE VOLUME ESTIMATED IN FORESTED PATCHES FROM 

MODELING WITH SURFACE REFLECTANCE AND IMAGERY CLASSIFICATION. 
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FIG. 27. SPATIAL DISTRIBUTION OF TOTAL TREE VOLUME ESTIMATED IN FORESTED PATCHES FROM 

REGRESSION KRIGING METHOD. 

 

 

4.7 FINE-SCALE ESTIMATION OF FOREST BIOMASS AND CARBON 

 

In relation to the biomass estimates, the mean biomass was of ~120.1156 Mg ha-1 (or 

10.8104 Mg pixel-1) and a total biomass of 217,736,862 Mg stored in the study area.  Considering 

the ratio 1 unit of biomass to 0.41 of carbon (Table 2), the mean carbon stock results in ~49.24738 

MgC ha-1 (or 4.4323 MgC pixel-1), meaning that the whole study area stores 89,272,113 MgC, i.e., 
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approximately 327,331,082 Mg of CO2-equivalent. Fig. 29 illustrates the spatial distribution by 

classes of biomass and carbon (Mg ha-1) across the study area. 

 
FIG. 28. SPATIAL DISTRIBUTION OF TOTAL FOREST BIOMASS AND CARBON ESTIMATED IN 

FORESTED PATCHES FROM SURFACE REFLECTANCE MODELING AND IMAGERY CLASSIFICATION. 
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5. DISCUSSION 

 

5.1 PERFORMANCE OF THE RK FOR ESTIMATING WOOD VOLUME 

 

The findings reveal that the RK method was unable to estimate wood volume from pixels 

with lower and upper stocks, precisely the ones with volume < 50 m³ ha-1 and > 210 m³ ha-1 (Fig. 

26). This limitation had already been noted for the RKM, in Fig. 17c, where wood volume estimates 

ranged from ~50 to ~150 m³ ha-1, while observed volumes ranged from ~25 to ~225 m³ ha-1. This 

fact indicates us that the analytical procedure of adding rasters of spatialized residuals and volumes 

was limited in fixing volume estimates from less and more stocked pixels. Despite its worse 

performance, the RMSE provided by RK fits into the results from surveys combining remotely 

sensed data and geostatistical methods (Yadav and Nandy, 2015; Scolforo et al., 2015; Scolforo et 

al., 2016). 

One of the main reasons why the RK has been less reliable than SRM concerns the input 

variables. In the tested RKM, wood volume was limited to the variation of latitude and longitude. 

If one of these variables is not significant, the volume then becomes dependent on only one 

geographical variable, as occurred in this study (where only latitude was significant at 95% 

probability level). Therefore, the RKM fitted to this study can attain extreme volumes under 

extreme latitudes only, but this last is limited to the study area. Another underlying deadlock of the 

tested RKM is that forest resources may not be stocked in a logical spatial gradient, what would 

hamper the performance of the models based on geographical location. The SRMs, in turn, were 

more efficient possibly because they estimate volume as function of spectral responses of 

vegetation, regardless of pixel geographical locations (as the RKMs), being therefore able to 

estimate upper and lower volume. In addition, forest variables commonly can be spatialized via 

remote sensing data (Viana et al., 2012), though a moderate tendency was noted in the SRMs (Fig. 

17a). 

As commented by Powell et al. (2010), the fact that no real parameter is known makes it 

difficult to state outright which method is superior; however, the findings suggest that the SRM 

was an alternative better than the RK method. As main highlight, the maps derived from the SRMs 

present extreme classes of volume, therefore they should better reproduce spatially ground realities. 

Although it is pointed this superiority, both methods provided close estimates for mean and total 
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volume, with relative difference of only 3.7%. In addition, the RK method provided an overall 

result considerably close to the SRMs. 

In forest surveys, RK has been successfully applied along with variables from various 

natures, inclusive remotely sensed data. Meng et al. (2009) tested four geostatistical methods 

aiming at estimating forest basal area in a region of ~35,000 km²; RK provided the smallest errors 

among the other geostatistical methods. The main difference between this study and that one from 

Meng et al. is that they used Landsat ETM+ data as input variables of the linear model, rather than 

geographical variables. Meng et al. had no limitation in estimating lower or upper values and 

obtained values of R² around 0.90. On the other hand, Viana et al. (2012) used remotely sensed 

data combined with RK for estimating AGB; the authors obtained low performance of the RK 

method, but they associated this result with a low spatial dependence of the variable.  

Aiming to spatialize aboveground carbon (AGC) in tropical forests, Scolforo et al. (2016) 

also used RK combined with longitude, besides another variable related to the biome. The authors 

obtained a mean error of ~ 58% and a residual distribution notably biased, but relatively better than 

the residuals showed in Fig. 17c. The commented limitation in estimating volume of extreme 

classes also was noted in Scolforo et al., indicating that their variable of interest (AGC) was limited 

to longitude such as in this study, where wood volume was limited to latitude.     

In a survey also with AGC, but in a larger study area (State of Minas Gerais, Brazil), 

Scolforo et al. (2015) selected the variables latitude and altitude in the model used to the RK. In 

this case, their residuals were much less biased than the residuals showed in Fig. 17c. The inclusion 

of altitude in the model possibly contributed to a better residual distribution, once elevation is 

commonly related to AGB and carbon, being thus constantly used to estimate such variables 

(Alves, et al., 2010; Zhang et al. 2009; Houghton et al., 2001). 

 

5.2 PERFORMANCE OF THE SRMS FOR ESTIMATING WOOD VOLUME, BIOMASS AND 

CARBON 

 

In the last section, it was addressed reasons why the SRM was superior to RK in this study. 

Here, some sources of error to fit the SRMs are highlighted. Firstly, the large variation of stand-

level volume observed in NFI plots can be cited as one of the main causes of loss of accuracy. In 

this study, it was observed many entirely forested clusters (i.e., the 40 plots classified into a forest 
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class) with low wood stock, or even without any stock. This occurs because the NFI inclusion 

criteria (of Dbh ≥ 10 cm) may exclude, for example, most of the trees belonging to an early-

successional forest. If a young vegetation like that is compared to a mature forest, they are likely 

to have less spectral discrepancy than volume discrepancy, given their greenness and wetness 

similarities. 

Secondly, the cluster’s sub-units are too small (20 x 50 m = 1,000 m², see Fig. 6) to be 

considered as single plots, due to the 30-m spatial resolution. Fassnacht et al. (2014) address 

problems related to size of sample units in remote sensing-derived estimation, including loss of 

accuracy. Such condition obligates us to expand the collection of pixels across the total area 

covered by the cluster, i.e. 40,000 m² (or 4 ha). In this case, total area is the area formed by the 

distances between sub-units 1 to 3, and 2 to 4 (which is 200 m each). Despite this total area is a 

reasonably sufficient sample size, it contemplates pixels from both sampled as non-sampled forest 

patches, hoping that they have similar stocks. For this reason, only entirely forested clusters had 

their total area expanded, since the other clusters have non-forested pixels over their total area. By 

following such needed strategy of expansion, a possible source of error concerns the 

incompatibility between pixels from sampled and non-sampled forest patches. This undesirable 

situation would entail in calibrating the models with data of stocks (derived from sub-unit’s data) 

incompatible to ground truth existing in the pixels from non-sampled patches. In addition to these 

two limitations, the complex composition and structure from the Brazilian tropical forests (Malhi 

et al., 1999) also are cited as negative influences to fit satellite-derived models (Mallinis et al., 

2004). 

As positive results from this study, it is cited the improvement in accuracy given when the 

SRM is modeled by Landsat scene. Although it is not presented here, a single SRM for the whole 

study area was tested and had performance much worse than the specific-by-scene SRMs used in 

this research. Aiming at estimating AGB in different sites, Foody et al. (2003) found that the 

contribution of Landsat bands to predict AGB differed between sites, so that bands that were 

important at one site were unimportant at other sites. As consequence of this, the vegetation indices 

that are strongly correlated with biomass also differed between sites, as well as the magnitude and 

direction of regression parameters. The results from Foody et al. are somehow similar to the results 

of regression analysis of this study, in which the spectral bands selected by the stepwise changed 

among the Landsat scenes, both for wood volume (Table 9), as for forest biomass and carbon (Table 
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11). As the Brazilian NFI plots cover a huge variability of forest types at a national scale, these 

findings suggest that it is of special importance to stratify the NFI plots into succession classes or 

sites. Unfortunately, the small number of observations allowed me to stratify data only by Landsat 

scene. Gains provided by stratification has been obtained even in planted forest surveys (Yadav 

and Nandy, 2015).  

The forestry literature is full of surveys proposing satellite-derived methods for estimating 

AGB and AGC, however, little effort has been devoted to the variable wood volume. Surveys that 

estimate forest variables as function of remote sensing data have generally showed weaker relations 

with wood volume than AGB. Fig. 30 shows Pearson correlations of forest variables (wood 

volume, biomass and carbon) along the spectral range. Indeed, Fig. 30 reveal that the biomass and 

carbon estimated in this study have stronger relations with spectral bands than wood volume. 

 
FIG. 29. CORRELATION BETWEEN LANDSAT-8 OLI BANDS AND FOREST VARIABLES FROM NFI PLOTS. 

 

Mäkelä and Pekkarinen (2004) and Mohammadi et al. (2010) used Landsat imagery to 

estimate wood volume in homogeneous forests, obtaining RMSE ranging from 48% to 100%. In 

deciduous forest, Tomppo et al. (2002) found up to 180% of error in volume estimates. On the 

other hand, all the AGB studies cited below had better performances. Lu et al. (2004) cite many 

authors who found strong relations between the visible bands and biomass, as well as negative 

relations between the middle infrared bands and wood volume. Despite the authors cited by Lu et 

al. studied coniferous and mixed forests typically from temperate regions, the relation between 

forest variable and spectral bands were overall similar to this study (Fig. 30).  
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Kim et al. (2013) also cite many other authors that used models analogous to what was here 

named SRMs, in which significant relationships between biomass and spectral bands have been 

detected, especially the visible and middle infrared bands. As found by these authors, the principal 

components (PCs) of NIR, NDVI, and Brightness had strong positive correlation with biomass and 

carbon, indicating an important role of them for biomass and carbon estimations. To the wood 

volume, the relationships were weaker, in which the two strongest correlations came from 

Brightness and SWIR1 (Fig. 30). Correlations between NDVI and wood volume was ~ -0.16 (third 

strongest), whereas with biomass and carbon was ~0.70 (second strongest).  

In forestry, satellite-derived estimates of forest resources have been widely tested by means 

of various methods, including combination with multivariate analysis, and with artificial neural 

networks (ANN). Fazakas et al. (1999) used the k nearest-neighbor (kNN) algorithm to estimate 

wood volume and biomass on NFI sample plot data. After calibrating the algorithm with ground 

values and Landsat TM bands, the method employed by the authors assigns values of wood volume 

and biomass to forested pixels, basing on spectral responses from the k=5 nearest-neighbor pixels. 

On plot level, Fazakas et al. found RMSE higher than (~66% for both forest variables) the ones 

observed here. However, they noted that the RMSE decreased at levels larger than at the plot level. 

Such as in this study, the authors detected that the kNN method overestimated low wood volumes. 

Labrecque et al. (2006) evaluated four methods (DRR, kNN, LCC, and BioCLUST – see meaning 

of each abbreviation in their article) to map biomass, also obtaining RMSE values very close to 

results of this study. 

One difference between this study and the one from Fazakas et al. (1999) is that here NDVI 

was considered as input variable, which was selected in some SRMs by the stepwise selection 

method (Table 9). This inclusion tends to improve the capability of the models because NDVI 

reflects green vegetation density and is directly related to forest biomass (Deo et al., 2017; 

Fassnacht et al., 2014). NDVI and other vegetation indices combined were used by Gu et al. (2006) 

to model wood volume from Landsat TM sensor data. With the same estimation method kNN, Gu 

et al. found RMSE smaller (~44%) than the values obtained by Fazakas et al. (1999). Likewise, 

Dube and Mutanga (2015) modeled AGB and noted that, when vegetation indices (including 

NDVI) were used, the models yielded better accuracy statistics than the models that disregarded 

such indices. The same was found by Zhu and Liu (2015). 
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A different method of predicting forest attributes from satellite data is presented in Hall et 

al. (2006): called the BioSTRUCT method. These authors developed a two-steps method for 

estimating volume and AGB, in which: first, stand height and crown closure are estimated as 

function of Landsat ETM+ spectral responses; and second, wood volume and AGB are estimated 

as function of height and crown closure estimated in the first step. Hall et al. found RMSE better 

than the traditional direct methods involving modeling. Despite these authors propose an 

interesting alternative, their method is applied to (Canadian) boreal forests, where crown closure 

remarkably differs from tropical forests, as the Brazilian ones. In spite of the fact that tropical 

forests have overall canopies closer than the boreal ones, they shelter taller trees, with more vertical 

variation, as well as a number of main tree species > 200 ha-1, whereas boreal forests have typically 

few main tree species (Malhi et al., 1999). These factors portray the spectral response of height and 

crown closure, increasing thus the difficult in estimating such variables in mixed forests (Kim et 

al., 2013). The BioSTRUCT method used by Hall et al., therefore, is more likely to work better in 

more homogenous forest types, what may explain the more accurate results obtained by the authors. 

 

5.3 WOOD VOLUME ESTIMATIONS AT COARSE AND FINE SCALES  

 

The wood volume observed in NFI plots (clusters) was directly extrapolated by means of 

two coarse-scale methods. The first alternative consists of obtaining total volume considering the 

EFA, which is the proportion of forest of each cluster multiplied by 400 km². At this coarse scale, 

estimate for the study area indicates 197,396,518 m³ in total, with confidence intervals (CI) ranging 

from 168,468,681 m³ to 226,324,356 m³ (Table 15), at 95% probability level.  

In the second alternative, total volume was obtained considering delimitation of the forested 

area by image classification. A total volume of 111,013,407 m³ was estimated in this case, i.e., 

value 43.8% smaller in relation to the total estimated in the first case, which was of 197,396,518 

m³. Despite unexpected, such large difference is due to some reasons. One of them is because, in 

the first alternative, EFA is of 400 km² for entirely forested clusters (Table 15), whereas in the 

second alternative, the FADIC was of ~140 km² per cluster. For partially forested clusters, EFA 

(~192 km² per cluster) also was smaller than FADIC (~133 km² per cluster). 

As EFA and FADIC are the extrapolation factors, respectively, for the first and second 

alternatives, the variation of them directly affects the estimated totals. The main issue to consider 



96 

 

 

 

in comparing both alternatives is that, the larger the number of entirely forested clusters, the larger 

the difference between the totals, in which extrapolations without assistance of image classification 

will always produce totals larger than extrapolations with assistance of image classification. In this 

case, a smaller difference between totals would be obtained with compensations from larger 

FADICs of partially forested clusters. 

In relation to the SRM and RK methods, surprisingly, both the fine methods fitted into the 

CI obtained at coarse scale. The total volume estimated through SRM was of 210,961,589 m³, and 

through RK 203,326,674 m³, a difference of, respectively, 6.9% and 3.0% in relation to the coarse-

scale estimation. 

The fact that the fine-scale estimation fitted into the CI provided by the coarse-scale one 

was also found by Gobakken et al. (2012). In a similar analysis with AGB stock, Gobakken et al. 

used plot data from the Norwegian NFI to investigate the performance of two sampling strategies 

based on Airbone Laser Scanner (ALS) data. The authors compared AGB estimates with assistance 

of ALS and estimates solely derived from field measurements. As results, CIs of the two ALS-

based methods fitted into the CI of the direct method (without assistance of ALS), having a relative 

difference for the mean AGB of ~8% and ~2%, in relation to the total AGB directly estimated from 

field data. Gobakken et al. found smaller differences in relation to this study, which may be 

associated with a more accurate data source (based on LIDAR), a more homogeneous forest type, 

as well as the finer sampling intensity employed in the Norwegian NFI (Gobakken et al., 2012). 

Finally, the fitting of the fine-scale estimates into the CI provided by the coarse-scale 

estimate is a good indicator that Brazil’s NFI sampling intensity produces reliable estimates of 

wood volume. These findings confirm what many authors have concluded about capabilities 

provided by satellite data-derived estimates (Bohlin et al., 2017; Maack et al., 2016; Kim et al., 

2013; Labrecque et al., 2006; Krankina et al., 2004; Fazakas et al., 1999). The comparison test 

accomplished with the Landsat and RapidEye images indicates that the impact of the image spatial 

resolution is tiny (at least comparing the 30-m and 5-m resolutions) in the overall estimate of wood 

volume. However, it is important to highlight that such analysis does not quantify the effect of the 

spatial resolution on the classification and delimitation of forest patches. Finer spatial resolution 

images will probably provide more forest patches in the classifications (due to capability of 

detecting smaller patches), increasing thus the forest area in relation to coarser scale images. 

 



97 

 

 

 

6. CONCLUSION 

 

In this study, wood volume from NFI plots was estimated and mapped at pixel level through 

two methods: (i) linear regression model (SRM) based on surface reflectance data, and (ii) 

regression kriging (RK) combined with a linear model based on geographical variables (latitude 

and longitude). These fine-scale methods provided close estimates for the total volume (difference 

of ~8%), confirming the first raised hypothesis. However, the SRM had the best capability to 

mapping the spatial distribution of the wood volume. The SRM also provided accurate estimates 

and mappings of forest biomass and carbon stocks. The low performance of the RK method in 

spatially mapping the studied variables is due to the fact that the geographical variables is limited 

to how big is the study area. 

Estimates of the total wood volume derived from SRM and RK fit into the confidence 

interval obtained at a coarse scale, what contrasts the second raised hypothesis. This indicates that 

Brazil’s NFI sampling intensity produces reliable estimates of wood volume. Even with a broad 

sampling intensity of 1:100,000, the results reveal that both the tested methods (SRM and RK) of 

estimating wood volume can be applied to the Brazilian NFI plot data. To reinforce such statement, 

further surveys should be developed in the other Brazilian biomes, mainly in regions where there 

is larger variation of wood volume and biomass stocks. 

The coarse-scale extrapolation supported by image classification underestimates the total 

wood volume, in relation to that unsupported one. This occurs due to the lesser forested area found 

in the method with image classification, in relation to the represented forested area associated to 

each cluster. Further researches should be conducted with other NFI database to confirm that 

conclusion. 
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7. RECOMMENDATIONS 

 

Some lessons were learned about pixel-level modeling by using Brazil’s NFI plot data and 

satellite imagery. This study adopted Landsat image pixels and field measurements from Brazil’s 

NFI plots as data source for modeling wood volume, biomass and carbon. To whom will develop 

novel works, it should be kept in mind that the cluster’s sub-units are too small (1,000 m²) to 

compose the pairs of data together with the pixels’ reflectance values, since the image pixels are 

of 900 m². An alternative is to perform an image fusion, resizing the pixel size of Landsat imagery 

from 30 m to 15 m. Thus, a certain variable taken from the sub-unit would compose the database 

instead of it taken from the entire cluster, as occurred in this study. With this alternative, the 

minimum unit is no longer the cluster, but rather the cluster’s sub-unit. 

There are two ways of improving the goodness of fit statistics of the SRMs. One of them is 

reducing the minimum unit of pairs of data, as cited above. Beyond the cited alternative, the 

minimum unit could be reduced until plots’ sub-units of 100 m². Another way is to fit models by 

Landsat scene, as done in this study, rather than when by an entire mosaic of images. The use of 

PCs did not improve RKM accuracy, but they provide more consistent estimators. Although it was 

not used in this study, visible-bands could improve the SRMs of biomass and carbon. 

Further studies should be conducted employing RK with other variables besides longitude 

and latitude, such as altitude, soil attributes, climate variables, etc. In addition, the RK method is 

likely to be more suitable for larger areas, as the whole state of Parana. 

As the Brazilian NFI does not provide tree-level equations (for tree height, wood volume, 

biomass and carbon), it is very important to find robust equations. This ensures accurate tree-level 

estimates, providing in turn accurate pixel-level estimates. Otherwise, large errors and inconsistent 

estimates may be obtained, as negative values. 

In relation to the image classifications, the use of eCognition and object-oriented 

classification are recommended for Landsat imagery. To attain a good segmentation and 

classification, the user must pay attention in the parameters described in the section 3.2.2 ii. There 

is no fixed parameter for each situation. The user should test different parameters of shape and 

compactness and then choose the most proper for each case. As Landsat imageries are too large, 

the user can split them into smaller scenes, reducing thus the number of objects by scene. This 

automatically reduces the computational burden, as reported in the section 3.2.2 ii. 
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App. 1. Main sampling statistics for the variable wood volume, with standard error obtained 

through the ratio estimator for SS with cluster. 

Statistics Unit 

Type of cluster 

Entirely 

forested (A) 

Partially 

forested (B) 

(C) Non- 

Forested 

Total 

(A+B) 

Frequency* 
absolute 7 89 56 96 

% 4.6% 58.6% 36.8% 63.2% 

Represented 

area 

ha 280,000 3,560,000 2,240,000 3,840,000 

% 4.6% 58.6% 36.8% 63.2% 

Extrapolated 

forested area 

ha 280,000 1,707,000 0.0 1,987,000 

% 14.1% 85.9% 0.0% 100.0% 

Sampling 

error 

m³ ha-1 65.1 61.8 - 66.3 

% 30.1% 77.1% - 82.7% 

C
o

n
fi

d
en

ce
 

in
te

rv
al

 (
5

%
) Lower limit m³ ha-1 151.5 18.3 - 13.8 

Mean m³ ha-1 216.6 80.1 - 99.3 

Upper limit m³ ha-1 281.7 141.9 - 146.4 

Lower limit m³ 42,402,738 31,280,236 - 23,612,896 

Total m³ 60,639,475 136,757,044 - 197,396,518 

Upper limit m³ 78,876,212 242,233,852 - 249,901,192 

*Total frequency of forested and non-forested clusters (A+B+C) = 152 (100%).  
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App. 2. Samples of surface reflectance of natural vegetation for Landsat-8 OLI bands. 
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App. 3. Samples of image classification of Landsat-8 scene (221/77) in the State of Parana. 
Unclassified image Classified image 

Zoom: 50% 

  
Zoom: 100% 

  
Zoom: 300% 
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App. 4. Samples of image classification of Landsat-8 scene (222/77) in the State of Parana. 
Unclassified image Classified image 

Zoom: 50% 

  
Zoom: 100% 

  
Zoom: 300% 
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App. 5. Samples of image classification of Landsat scene (222/78) in the State of Parana. 
Unclassified image Classified image 

Zoom: 50% 

  
Zoom: 100% 

  
Zoom: 300% 
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App. 6. Samples of image classification of Landsat scene (223/77) in the State of Parana.  
Unclassified image Classified image 

Zoom: 50% 

  
Zoom: 100% 

  
Zoom: 300% 

  
 




