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resumo 
 
 

A micro-camada superficial da água (SML) é caracterizada pela ocorrência de 
grandes quantidades de compostos orgânicos, pela acumulação de 
contaminantes antropogênicos e é submetida a uma intensa radiação solar, 
extrema mudança de temperatura e, no caso dos estuários, flutuação de 
salinidade. Estas propriedades físico-químicas estão, provavelmente, a 
modular a comunidade bacteriana (bacterioneuston) com propriedades 
filogenéticas e funcionais específicas. Neste estudo, as abordagens 
dependentes e independentes do cultivo foram aplicadas para avaliar a 
estrutura e dinâmica das comunidades bacterioneuston e bacterioplâncton em 
três localizações geográficas ao longo do estuário da Ria de Aveiro. Além 
disso, comparámos a diversidade filogenética de grupos específicos 
(Aeromonas, Pseudomonas e Psychrobacter) presentes em bacterioneuston e 
bacterioplâncton. Finalmente, as duas comunidades foram comparadas em 
termos de prevalência e diversidade de bactérias resistentes aos antibióticos e 
respetivos genes de resistência. Bactérias heterotróficas cultiváveis foram 
enriquecidas em SML. Eletroforese em gel de gradiente desnaturante (DGGE) 
permitiu a identificação de filotipos específicos em SML. Além disso, a análise 
de agrupamento dos perfis de DGGE de ambas as comunidades revelou uma 
ligeira tendência de agrupamento de acordo com a camada amostrada. As 
diferenças entre as duas comunidades variaram de acordo com factores 
espaciais e temporais. Em termos de diversidade filogenética de grupos 
específicos, não foram identificadas diferenças consistentes entre SML e UW 
com relação às comunidades de Aeromonas. Com relação ao género 
Pseudomonas, uma unidade operacional taxonómica cultivável foi 
consistentemente hiper-representada nas amostras de SML. Metodologias 
dependentes e independentes do cultivo revelaram a presença de populações 
de Psychrobacter complexas e muito estáveis em todos os sítios e datas de 
amostragens, com diferenças significativas entre as comunidades de 
Psychrobacter presentes em SML e UW. Estirpes representativas de prováveis 
novas espécies também foram cultivadas. Em termos de resistência aos 
antibióticos, a prevalência de bactérias resistentes em SML foi alta sugerindo 
selecção pelas condições presentes em SML. É preciso enfatizar que a 
resistência aos antibióticos foi incomum entre as bactérias estuarinas e os 
mecanismos de resistência foram, predominantemente, intrínsecos. Pela 
combinação de abordagens inovadoras dependentes e independentes do 
cultivo, este estudo forneceu novas e consistentes informações com relação às 
diferenças em ambas as comunidades bacterianas e em relação a alguns dos 
fatores que contribuem para a sua formação. 
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abstract 
 

The water surface microlayer (SML) is characterized by the occurrence of high 
amounts of organic compounds, the accumulation of anthropogenic 
contaminants and is subjected to intensive solar radiation, extreme temperature 
changes and, in the case of estuaries, salinity fluctuations. These particular 
properties are probably modulating a bacterial community (bacterioneuston) 
with specific functional and phylogenetic properties. 
In this study, culture-dependent and culture-independent approaches were 
applied to evaluate the structure and dynamics of the bacterioneuston and 
bacterioplankton communities in three geographic locations along the Ria de 
Aveiro estuary. Additionally, we compared the phylogenetic diversity of specific 
groups (Aeromonas, Pseudomonas and Psychrobacter) present in 
bacterioneuston and bacterioplankton. Finally, both communities were 
compared in terms of prevalence and diversity of antibiotic resistant bacteria 
and resistance genes. 
Cultivable heterotrophic bacteria were enriched in the SML. Denaturing 
gradient gel electrophoresis (DGGE) allowed identifying SML-specific 
phylotypes. Also, cluster analysis of DGGE profiles from both UW and SML 
revealed a slight tendency for grouping according to sampled layer. Differences 
between both communities varied according to spatial and temporal factors. In 
terms of phylogenetic diversity of specific groups, consistent differences 
between SML and UW aeromonads communities were not identified. 
Regarding Pseudomonas, a cultivable operational taxonomic unit was 
consistently overrepresented in SML samples. Culture-dependent and culture-
independent methodologies revealed the presence of complex and very stable 
Psychrobacter populations in all sampling sites and dates, with significant 
differences between SML and UW Psychrobacter communities Strains 
representing putative new species of Psychrobacter were cultivated.  
In terms of antibiotic resistance, the prevalence of antibiotic-resistant bacteria 
was higher in the SML suggesting selection by SML conditions. It has to be 
emphasized that antibiotic resistance was uncommon among estuarine 
bacteria and the resistance mechanisms were predominantly intrinsic. 
Differences between bacterioneuston and bacterioplankton in Ria de Aveiro 
were detected at different levels: the structure of the total bacterial community, 
the diversity of specific groups, and in the ability to resist to antibiotics. By the 
innovative combination of culture-dependent and independent approaches we 
provide new and consistent information regarding the differentiation of both 
bacterial communities and some of the factors that contribute for their shaping. 
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1.1. The water surface microlayer (SML) 

 

The water surface microlayer (SML) represents the boundary interface between 

hydrosphere and atmosphere defined as roughly the uppermost 1 to 1,000 µm of the water 

surface (Liss et al., 1997). This layer is represented by a thin biogenic film, naturally 

occurring in marine, estuarine and freshwater water bodies and covering almost 71% of the 

world’s surface (Hardy, 1982; Hale & Mitchell, 1997).   

 

1.1.1 Dimension and physicochemical properties of SML 

 

Historically, the estimation of the thickness of the SML varies widely, due to different 

sampling protocols (Zhang et al., 1998, 2003; Zhengbin et al., 1998). Nevertheless, it is 

generally accepted that SML does not exceed 1,000 µm in depth (Hunter, 1980; Broecker 

& Peng, 1982). 

The early descriptions of this layer resulted on a classical model of a stratified structure 

comprising an upper lipid layer containing “dry” active-surfactant fatty-acids, long-chain 

alcohols and lipids (typically considered to be of very low solubility) covering the 

subsequent “wet” surfactant protein-polysaccharides layer. In the next sub-layers of SML 

many aquatic organisms can be found (Figure 1.1a) (Hardy, 1982; Hermansson, 1990). 

 Collectively aquatic organisms within the microlayer are known as the neuston, and 

the community of bacteria present within this neuston layer was named the bacterioneuston 

(Naumann, 1917). According to the classical model of stratified layers, immediately below 

the bacterioneuston compartment, deeper layers of phytoneuston and zooneuston can be 

found (Zuev et al., 2001). 

However, recent evidences indicate that instead of a stratified microlayer, the SML is 

represented by a hydrated gelatinous microlayer film comprising macromolecules and 

colloids that are mainly produced from dissolved organic matter (DOM) and particulate 

organic matter (POM). A microbial community is attached to this gelatinous film (Figure 

1.1b) (Walczak & Donderski, 2004; Wurl & Holmes, 2008; Cunliffe et al., 2009b). 
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Figure 1.1 Schematic model of the structure of the SML. (a) The classical model of a stratified structure 

showing two layered surface microlayer: upper layer containing “dry” surfactant lipids 

covering the underlying “wet” layer composed of protein-polysacharides. (b) The current 

model of hydrated gelatinous microlayer film enriched with TEP and associated microbial life. 

Picture was extracted from Cunliffe et al, 2011. 

 

This proposal was first advanced by Sieburth (1983) and was established based on 

many observations made over several years, including indications that lipids were not 

present in sufficient concentrations to justify the classical model (Williams et al., 1986). 

Additionally, microbial cells collected from SML of the Sargasso Sea exhibited 

amylolytic activity and lacked lipolytic and proteolytic activities, leading to the conclusion 

that the surface films originated mainly from released carbohydrates rather than lipids 

(Sieburth & Conover, 1965). Thus, Sieburth (1983) hypothesized that the distinct slick 

reported directly above the bloom was formed by a complex structure of polysaccharides 

and proteins. His proposal was in congruency with earlier studies by Baier et al. (1974) 

which also suggested the dominance of polysaccharides and proteins in the composition of 

the SML. 

One of the most ubiquitous groups of gel particles present in the marine environment is 

known as transparent exopolymer particles (TEP) (Verdugo et al., 2004).  TEP are 

(a) (b) 
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generally formed in the SML by the coagulation of biogenic polysaccharides and proteins, 

mainly produced by phytoplankton, reaching the SML compartment and acting as a 

binding matrix that maintain SML aggregates together (Verdugo et al., 2004). 

Experiments evaluating the capacity of seawater containing TEP precursors in forming 

TEP de novo also showed that TEP were able to aggregate latex spheres, which were used 

to mimic microbial cells inhabiting the binding matrix (Azetsu-Scott & Passow, 2004). 

These results corroborate the hypothesis that a microbial community can be found 

intimately attached to the gelatinous film. These findings also contradict the classical 

model of the SML in which the bacterial community is immediately below the “dry” and 

“wet” surfactant layers, consequently not mixed within the biofilm. 

Evidences based on fluorescent in situ hybridization analysis with probes targeting 

Bacteria, Betaproteobacteria and Gammaproteobacteria also revealed that TEP in SML 

may facilitate the aggregation of bacterial cells in this layer rather than in underlying water 

(UW), in which bacterial cells seem to be more dispersed (Cunliffe & Murrel, 2009). 

Wurl and Holmes (2008) have identified TEP as being attached to particulate-forming-

aggregates. Moreover, they compared the concentration of TEP from SML and UW in 

oceanic and estuarine water from Southeast Asia. They showed that the TEP enrichment 

factor was higher in SML, especially in estuarine water (Wurl & Holmes, 2008). Similarly, 

significant TEP enrichment in SML was identified in experimental mesocosms using 

Norwegian fjord waters to stimulate phytoplankton blooms (Cunliffe et al., 2009c). 

Enrichment factor (EF) is basically defined as the concentration of a specific 

component in the SML divided by its concentration in UW. This measurement is a 

standard practice in SML research to specify the microlayer depth. As previously stated, 

SML depth is still under discussion, probably because there is currently no consensus as to 

the most appropriate strategy for sampling the surface microlayer, constraining 

comparative analysis. 

Despite of that, the enrichment of several compounds often detected in the SML arises 

mainly from the fact that it is the first layer of water that receives wet and dry atmospheric 

deposition (Hardy, 1982). Atmospheric deposition of matter has been reported to be a very 

important input for the enrichment of SML (Wotton & Preston, 2005). The high amounts 

of compounds from atmospheric deposition and also those from biogenic sources such as 

protein, lipids and organic surfactants increases the SML film stability, which, 
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consequently, promotes an enrichment in particles, organisms and dissolved material (Zuev 

et al., 2001). 

Enrichment also occurs by bursting bubbles containing microorganisms, including 

viruses, proteinaceous material and gel particles (Kuznetsova et al., 2005), going upward to 

the SML via positive buoyancy (Azetsu-Scott & Passow, 2004). 

Due to its distinct chemical composition, this interface also acts as both a sink and a 

source of anthropogenic persistent organic pollutants (POPs), including pesticides, 

polychlorinated bi-phenyls (PCBs), organotin compounds, polycyclic aromatic 

hydrocarbons (PAH) and heavy metals (Agogué et al., 2004; Wurl & Obbard, 2005; 

Obernosterer et al., 2007; Cuong et al., 2008; Wurl & Holmes, 2008; Wurl et al., 2009). In 

fact, many studies have quantified a wide spectrum of chemical contaminants that 

preferably accumulate in the SML compared to UW in different aquatic systems (this topic 

was deeply reviewed by Wurl & Obbard, 2004). Those studies have shown that the 

enrichment factor of SML samples from coastal and estuarine waters was higher when 

compared to the open ocean (William & Robertson, 1973; Fowler 1990; Wurl & Obbard, 

2004). This stronger enrichment in coastal and estuarine SML can be mainly attributed to 

shipping activities and terrestrially derived material from wastewater discharges, 

agricultural and industrial run-off and atmospheric deposition of combustion residues 

(Wurl & Obbard, 2004). 

POPs represent a wide range of recalcitrant xenobiotic chemicals with known 

toxicological effects in the marine environment. The enrichment of POPs in the SML 

represents a potential threat to marine biodiversity and, in general, SML concentrations of 

PCBs, dichlorodiphenylethanes (DDT) and PAHs could be higher by factors of up to 10, 

40 and 113 respectively compared to underlying waters (William & Robertson; Cincinelli 

et al., 2001). Also it may have strong economical impacts by affecting fishery activities 

and aquacultures. In fact, undesirable effects have already been reported on endocrine 

systems of a sort of aquatic organisms, including mammals (Tanabe, 2002; Bosveld & van 

den Berg, 2002) and fish larvae (Cross et al., 1987), mainly related to the accumulation of 

pesticides and PCBs.  

Another potentially toxic group of pollutants that preferably accumulates within the 

SML are organotins (Gucinski, 1986), namely tributyltin (TBT), which is a common 

contaminant of marine and freshwater ecosystems due to its use as an antifouling agent in 
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boat paints. As a result of its widespread contamination, chronic and lethal effects on 

aquatic organisms, such as algae, zooplankton, molluscs and the larval stage of some fishes 

are well known (Leung et al., 2006; Choi et al., 2009; Liu et al., 2011). TBT or even 

products from its degradation have been identified as occurring preferably in SML from 

semi-enclosed water bodies, such as estuaries and marinas, as well as in shipping channels 

and harbours rather than in rivers and offshore (Arambarri et al., 2003; Nogueira et al., 

2003).  

Higher concentrations of PAHs have also been detected in SML (Anikiyev & 

Urbanovich, 1989), particularly at sampling locations where human coastal activities are 

intense. Therefore, these areas are highly influenced by discharges from shipping, by the 

size of the port and its intensity of shipping traffic and also by the limitation in water 

exchange, which collectively can strongly concentrate these contaminants in the 

microlayer (Zeng & Vista, 1997; Cincinelli et al., 2001). Pollution by PAHs is particularly 

hazardous to all compartments of the environment because they are highly toxic, 

carcinogenic and teratogenic compounds (Burton et al., 2006). PAHs released into the 

environment are mainly from anthropogenic sources, through contamination by crude oils, 

coal, coal tar or pyrolytic origin.  

Concerning heavy metals, their concentrations normally decrease with distance from 

coastline owing the fact that heavy metals are often associated to organic ligands, which 

are more likely to occur due to anthropogenic discharges (Cross et al., 1987; Hardy & 

Cleary, 1992). As dissolved and particulated organic matters are frequently enriched in the 

SML compartment, this interface has been recognized as a “hot spot” for the enrichment of 

heavy metals in aquatic ecosystems (Hunter & Liss, 1981; Hardy et al., 1985; Cuong et al., 

2008). In fact, Cuong et al. (2008) have found higher concentrations of arsenic, copper and 

nickel especially in the particulate fraction of the SML compartment from Singapore’s 

coastal waters. Moreover, an enrichment factor of 1.33 of dissolved organic matter (DOM) 

in the SML compared to UW from Jiulong estuary (China) has led to higher concentrations 

of Cu and Cd in the SML (Hong & Lin, 1990). 

Many heavy metals are crucial to the metabolism of various aquatic organisms. 

However they become potentially toxic to aquatic life if their concentration reaches the 

threshold of bio-availability (Blackmore, 1998). Sources of heavy metals in aquatic 

environments include atmospheric deposition, riverine inputs, wastewater discharges and 
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re-suspension of contaminated bottom sediments (Mart et al., 1982; Poikāne et al., 2005). 

In summary, regardless of the aquatic ecosystem that is being considered, many studies 

have indicated that SML, compared to the underlying water column, is a potential site of 

enrichment of heavy metals and a diversity of other pollutants, thus having a pivotal role in 

the distribution of these contaminants globally, with relevant implications regarding 

aquatic ecotoxicology, including mortality, abnormal development of a wide range of 

organisms (mainly at first stages of life, including larvae) and depression of grow rates 

(Cross et al, 1987).  

SML is also subjected to seasonal and diurnal fluctuations with greater extremes in 

temperature, salinity and solar radiation when compared to UW (Hardy, 1982). In fact, 

owing to strong direct solar radiation affecting the SML, this interface often become on 

average 0.1 to1.4ºC warmer than the troposphere (Zuev et al., 2001). Additionally, solar 

radiation promotes photolysis of DOM resulting on reactive radicals such as singlet oxygen 

and hydroxyl radicals (Miller, 1994; Zepp et al., 1995; Santos et al., 2011a) thus making 

this microlayer into a hostile environment for living organisms. 

 

1.1.2 Biological properties  

 

Organisms present in the SML may have developed life strategies to survive in this 

inhospitable habitat exposed to intense solar radiation, strong temperature and/or salinity 

gradients, toxic organic substances, and harmful concentrations of heavy metals (Maki, 

1993). Still, a wide spectrum of organisms can be observed at the extremophile 

microhabitat found in the SML, generally in higher abundances than in UW (Hardy, 1982). 

These organisms are named neuston (Naumann, 1917) and include phytoneuston, 

bacterioneuston and zooneuston.  

Phytoneuston has a pivotal role in autotrophic production in the SML, owing the 

photosynthetic activity of a great variety and density of microalga occurring in this 

interface (Hardy, 1973). Phytoneuston composition has a particular significance on air–sea 

gas fluxes and also supports higher trophic levels. In fact survival rates of numerous types 

of invertebrate larvae depend on microalga availability in the SML (Hardy, 1982). 

Phytoneuston populations are frequently dominated by Chrysophyta, Chlorophyta, 

Euglenophyta and neustonic diatoms (Hardy, 1971) and studies based on phytoneuston 
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taxonomical composition often pointed differences between SML and UW mainly by the 

dominance of Cercozoa and Ciliophora in the SML (Williams et al., 1986; Hardy & Apts, 

1984, Cunliffe & Murrel, 2010). Additionally, surveys based on pigmented-signatures 

between phytoneuston and phytoplankton communities in a coastal lagoon of Baja 

California revealed differences in both communities with a greater concentration of two 

pigments in the SML, however not detected in UW, which was enriched with other types 

of pigments depleted in the SML (Montes-Hugo & Alvarez-Borrego, 2007). 

The secondary productivity in the SML depends upon the zooneuston, mostly 

represented by small and large metazoan and eggs, larvae and small fishes including some 

with high commercial value (Barrtlett & Haedrich, 1968; Zaitsev, 1971). Zooneuston has a 

critical role in the food aquatic network being consumed by higher trophic levels and also 

being responsible for the consumption of phyto- and bacterioneuston (Hardy, 1971). It has 

been demonstrated that SML contains an abundance and diversity of bacteria, the so called 

bacterioneuston (Sieburth et al., 1976; Münster et al., 1998). Some estimates commonly 

state that the bacterioneuston is 102 to 103 times more abundant than the bacterioplankton 

at the same sampling sites (Bezdek & Calucci, 1972). Enrichment of dissolved organic 

matter often found in the SML has been suggested as the main factor driving the 

enrichment of bacteria (Sieburth et al., 1976). The bacterial abundance present in the SML 

could therefore create different protist niches supporting the surface microlayer-specific 

protist communities already observed (Cunliffe & Murrel, 2010). 

 

1.1.3 Studying the SML: sampling methodologies 

 

One of the challenges when analyzing the SML is to choose the adequate method to 

collect the surface pellicle in the specific conditions of the system under study. Several 

factors such as wind speed, biological and physicochemical properties and the volume of 

sample required are important in selecting the sampling strategy. 

 Regarding to the bacterioneuston field, four sampling methods are often applied: the 

metal screen – MS (Garrett, 1965), the rotating drum – RD (Harvey, 1966), the glass plate 

– GP (Harvey & Burzell, 1972) and hydrophilic/hydrophobic nucleopore membranes 

(Crow et al., 1975; Kjelleberg et al., 1979) (Figure 1.2; Table 1.1). 
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The MS consists of a stainless steel screen which is oriented horizontally and lowered 

through the microlayer into the subsurface water before being slowly withdrawn in the 

same way (Garrett, 1965).  

Rotating drum sampler uses a smooth, gyratory cylinder which surface is readily wet 

by water. A large neoprene blade is pressed tightly into the surface of the cylinder to 

remove continuously the film and water. Rotation is accomplished by a storage battery 

operated synchronous stepping motor with reducing gear (Harvey, 1966).  

Unlike MS, the GP device is introduced vertically, lowered through the microlayer into 

the subsurface water and slowly raised back out. Water samples are drained using a wiper 

blade and then, the adhered sample is stored into a sterile bottle (Harvey & Burzell, 1972). 

 

 

Figure 1.2 SML sampling devices often used: Rotating Drum – RD – (Harvey, 1966); Glass Plate – GP – 

(Harvey & Burzell, 1972); Metal Screen – MS – (Garrett, 1965); Membrane filters – MF : 

polycarbonate membrane (Crow et al., 1975) and polytetrafluoroethylene (Teflon) (Kjelleberg 

et al., 1979).  
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Adhesion sampling is also possible by using sterile hydrophilic (polycarbonate) or 

hydrophobic (teflon) membrane filters placed directly onto the water surface and then 

lifted up with the surface microlayer attached and placed into storage vessels for 

processing (Crow et al., 1975; Kjelleberg et al., 1979).  

Although there are controversial opinions regarding the sampling bias associated to the 

membrane properties, the potential of contamination with water column is considerably 

minor than the one expected when using MS or GP devices. On the other hand, the sample 

volume obtained is smaller when using membranes. Moreover, many authors have 

suggested that bacterioneuston tend to be concentrated in the uppermost 1 µm (Norkrans, 

1980; Hermansson, 1990) and thus, membrane filters would be more appropriated for 

sampling.  

Field studies comparing the efficiency of different sampling devices on given SML 

microbial community are relatively scarce. Agogué et al. (2004) compared three methods 

for sampling SML of the Mediterranean Sea to estimate chlorophyll concentrations, 

bacterial production, bacterial cell numbers (total and cultivable), viruses, flagellates and 

ciliates. There was no discrepancy in those analyses using either MS or GP, though the 

thickness of the SML sampled by GP device is thinner than the one sampled by MS (Table 

1.1). Thus, GP should be preferable to collect SML, since the thinner is the layer collected, 

more representative will be the sampled community. On the other hand, MS gives a level 

of contamination much lower than GP due to it being oriented horizontally during 

sampling events. Additionally, the MS method often obtains higher volumes than the GP, 

what might be an advantage for studies that require higher sample volumes (Agogué et al., 

2004).  Regarding SML sampling with membranes, the same authors have suggested that 

selective adherence of cells to Teflon and polycarbonate membranes resulted in biased 

numbers of bacterial cells (total and cultivable). 

 Recently, Cunliffe and co-workers (2009a) re-evaluated both membrane types as well 

as MS and GP methods specifically for molecular analysis of SML bacterial communities. 

Denaturing gradient gel electrophoresis (DGGE) revealed that bacterial community 

profiles from SML samples collected using both membrane types were 78% similar to 

those obtained from samples collected using the MS and GP devices. Additionally, profiles 

from UW samples (sampling depth 0.4m below surface) collected with both types of 

membranes and MS and GP devices grouped together. From this it was concluded that the 
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use of membranes does not select for a different microbial community (Cunliffe et al., 

2009a). 

Still, the most appropriate sampling method for sampling bacterioneuston community 

remains undefined. Choosing the SML sampling method is an essential step and the choice 

must take into account the main goal of the research project. For instance, for studies 

considering the influence of tidal regimens the time of sampling must be restricted to a 

minimum to avoid temporal variability. In such cases, a method able to collect high 

volumes in a short period would be more appropriate.  

 The structure, thickness and composition of SML varies in different ecosystems (Wurl 

et al., 2011) and such variations might be driven by physical and atmospheric conditions, 

such as input of wet/dry material, rainfall events, wind speed and tidal cycles, as well.  

Specifically, wind speed factors can greatly contribute for SML-forming and its 

dynamics (Hale & Mitchell, 1997). Several studies have assumed that wind speeds of < 3- 

4 m s-1 are the limit for SML sampling due to its surface-tension stability (Sieburth et al., 

1976; Williams et al., 1986; Agogué et al., 2004; Reinthaler et al., 2008), however, Wurl et 

al. (2009; 2011) have demonstrated that enrichment of surface-active compounds in the 

SML can persist at wind speeds greater than 6 m s-1. 

Nonetheless, in general, indications for collecting SML should avoid conditions that 

may disturb the stability of the SML-biofilm, especially high wind speed and rainfall 

events during sampling procedures. For comparative studies of temporal and spatial effects 

on the dynamics of SML, sampling must be conducted under the same conditions of light 

regimens and tidal cycle for instance, besides low wind speed conditions. 
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Table 1.1 Summary of the advantages and disadvantages of the four most commonly used surface microlayer sampling methods 

 

 

 

 

 

 

 

 

 

 

 

 

Metal Screen – MS – (Garrett, 1965); Rotating Drum – RD – (Harvey, 1966); Glass Plate – GP – (Harvey & Burzell, 1972);  

Polycarbonate membrane – PC – (Crow et al., 1975); Polytetrafluoroethylene membrane (Teflon) – PTFE – (Kjelleberg et al., 1979). 

SML Sampling 

devices and depth 

(µm) 

Sample 

collected 
Advantages 

 

Disadvantages 

 

References 

MS 150-400 
Microbes, lipids 
and fatty acids 

Collects a relatively large 
sample volume, which facilitates 
more extensive analysis 

As the sampling depth is deep, the 
sample collected can be a mixture 
of both SML and UW. 
Difficulty in sterilize between 
sampling events. 

Carlson, 1982; Agogué et al., 
2004; 2005a,b; Joux et al., 
2006; Obernosterer et al., 
2008; Cunliffe et al., 2009a. 

RD 60-100 
Microbes and 
organic matter 

Collects exclusively SML Expensive and difficult to 
standardize operation 

Harvey, 1966 

GP 20-100 
Chemical 
compounds and 
microbes 

Same as mesh screen (MS). 
Additionally, collects the closest 
biological composition to the 
original in the SML. 

Same as with MS 
Agogué et al., 2004; 2005a,b; 
Cunliffe et al., 2009a.; Wurl et 
al., 2011. 

PC 4-40 
Microbes and 
organic matter 

PTFE 20-50 
Microbes and 
organic matter 

Collects exclusively SML; cheap 
and easily available 

Collects a relatively small sample 
volume; bias associated to bacterial 
counts; difficult to use in high 
wind speed 

Agogué et al., 2004; Franklin 
et al., 2005; Cunliffe et al., 
2009a. 
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1.2. Bacterial community inhabiting the SML 

 

As described above, the SML constitutes a unique physical, chemical and biological 

environment, different from deeper water, in which preferential deposition of organic 

matter, heavy metals and several pollutants occur. Also, this layer is subjected to strong 

temperature and/or salinity gradients (Liss & Duce, 1997) and to intense solar radiation 

(Agogué et al., 2005b). Thus, this environment gathers strong selective pressures affecting 

organisms associated to this interface.  

Hence, organisms present in the SML must have developed life strategies to survive in 

this microhabitat, often considered as an extreme environment. Consequently several 

studies suggested the presence of novel and unusual taxa in SML (Maki, 1993; Joux et al., 

1999; Maki, 2002).  

Microorganisms in the SML are subjected to a combination of both favorable and 

detrimental factors. For instance, the enrichment of organic material as a favorable factor 

may fuel the bacterioneuston community. In fact, different reports suggest that bacterial 

concentration in SML exceeds that of UW by orders of magnitude (Sieburth et al.1976; 

Hardy, 1982). Despite their abundance and expected widespread distribution, whether this 

unusual habitat determines a specific bacterial community remains unclear. The bacterial 

communities thriving at the SML are still poorly characterized in terms of phylogenetic 

composition and functional traits. 

 

1.2.1 Phylogenetic diversity 

 

Studies on the microbial ecology in the SML have reported conflicting results. Franklin 

and co-workers (2005) have chosen the membrane method for sampling the SML from the 

United Kingdom North Sea coast. Analysis of Bacteria 16S rRNA gene libraries 

constructed from DNA obtained from SML and UW revealed that the bacterioneuston was 

distinct from bacterioplankton, displaying significantly lower bacterial diversity (with only 

9 operational taxonomic units - OTUs) being mainly represented by two genera: Vibrio 

spp. (68% of clones) and Pseudoalteromonas spp. (21% of clones). In contrast, the 

bacterioplankton library showed 46 OTUs. The dominance of these genera was further 

confirmed by using gene probes specific for these two groups. Hybridization against 1,000 
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clones from bacterioneuston and bacterioplankton libraries revealed that 57% of clones 

from the bacterioneuston library hybridized to a Vibrio-specific 16S rRNA gene probe and 

32% hybridized to a Pseudoalteromonas-specific 16S rRNA gene probe. In contrast, the 

bacterioplankton library resulted in only 13% and 8% of 16S rRNA gene clones 

hybridizing to the Vibrio and Pseudoalteromonas probes respectively.  

Agogué et al. (2005a) compared the bacterioneuston and bacterioplankton structure by 

using culture and genetic fingerprinting methods. Samples were obtained using the MS and 

GP samplers from two sampling sites: the oligotrophic Bay of Banyuls-sur-Mer, France, 

and a moderately eutrophic area of Olympic Harbour in Barcelona, Spain. Proteobacteria 

were consistently more abundant in the collection from the pristine environment whereas 

Gram-positive bacteria were more abundant in the polluted site, especially in SML 

samples, where Actinobacteria were prevalent. Based on single-strand conformation 

polymorphism profiles (SSCP) of Bacteria 16S rRNA genes, only a few additional peaks 

were found in SML samples from the eutrophic sampling point, suggesting the occurrence 

of minor differences between SML and UW bacterial communities. Besides that, authors 

reported no consistent difference between the bacterioneuston and the bacterioplankton at 

either site.  

Latter, the bacterial communities in the SML and UW at two sites along a small tidal 

estuary, located on the North Sea coast of the United Kingdom, were compared using 

culture-independent molecular-based approaches, namely DGGE and 16S rRNA gene 

libraries (Cunliffe et al., 2008). DGGE profiles revealed that microbial community 

composition remained relatively similar (similarity 88%) in UW at both sampling sites and 

many of the dominant 16S rRNA gene amplicons, present as intense bands in UW DGGE 

profiles, were also present in DGGE profiles from the SML, showing that comparatively to 

SML, those intense DGGE bands represent abundant taxa in the UW community. On the 

other hand, DGGE profiles from SML samples showed 16S rRNA amplicons (DGGE 

bands) not detected in UW samples or being only dominant in SML samples, thus 

indicating SML-specific microbial populations. Those DGGE bands were excised and 

sequenced. Sequences were similar (91 - 100%) to 16S rRNA gene sequences from 

members of Betaproteobacteria, Gammaproteobacteria and Bacteriodetes retrieved from a 

large variety of marine and estuarine habitats. Additionally, dominant amplicons found in 

SML were affiliated to Glaciecola spp. and Alteromonas, which are phylogenetic relatives 
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of the genus Pseudoalteromonas, already reported as a dominant component of the 

bacterioneuston from the coastal North Sea (Franklin et al., 2005). Regarding the 16S 

rRNA gene libraries, although libraries from SML and UW samples shared several OTUs, 

most OTUs in both libraries were unique to that library, revealing that SML-specific or 

UW-specific bacterial populations were sampled. 

In another study, the bacterioneuston DGGE profiles from two sampling sites, on 

opposite sides of the Hawaiian Island of Oahu in the Pacific Ocean, were more similar to 

each other than to the corresponding bacterioplankton (Cunliffe et al., 2009a).  

Similar results were obtained in a mesocosm-based study (Cunliffe et al., 2009c). Both 

communities were profiled using DGGE and distinct profiles were obtained for 

bacterioneuston and bacterioplankton. SML-specific DGGE bands were sequenced and 

phylogenetically affiliated to two families: the Flavobacteriaceae and the 

Alteromonadaceae (Cunliffe et al., 2009c).  

Only a few studies were conducted aiming to compare the bacterial communities 

inhabiting the SML and UW in freshwater systems. The existence of a distinct 

bacterioneuston community was investigated in an alpine lake during two consecutive ice-

free seasons (Hörtnagl et al., 2010). They verified that SML and UW communities were in 

general similar and dominated by Actinobacteria and Betaproteobacteria. However, they 

identified a few specific bacterial members of Betaproteobacteria as being efficient 

colonizers of the SML from alpine lakes. 

More recently, the effect of meteorological conditions (namely wind speed and solar 

radiation) on bacterioneuston and bacterioplankton community structures were examined 

taking into consideration non-attached and particle-attached bacterial assemblages (Stolle 

et al., 2011). Authors have concluded that non-attached communities of the SML and UW 

were very similar and differences between them were only observed with low wind speed 

and high radiation levels. In contrast, the difference in the particle-attached community 

structure between the bacterioneuston and the bacterioplankton were more pronounced, 

suggesting that particulate organic material accumulation seems to differentiate the 

community structure of bacterioneuston from that of bacterioplankton, rather than 

meteorological conditions. Additionally, SML-specific SSCP bands from 16S rRNA 

fingerprints of the particle-attached and non-attached fractions were sequenced and were 
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phylogenetically related to Cyanobacteria, Bacteroidetes, and Alpha-, Beta-, and 

Gammaproteobacteria originally found in diverse habitats.  

Most of the studies designed to compare the structure of the bacterial communities 

inhabiting the SML and UW have focused on small collections of bacterial isolates or, 

when culture-independent methods were used, on the comparison of the composition of the 

communities at high taxonomic levels. Studies focusing on differences between layers in 

terms of occurrence and diversity of specific bacterial groups were not conducted before. 

During the present study efforts were made to detect differences at the genus level. For this 

the genus Psychrobacter was selected since it was one of the most frequently retrieved 

genera in the estuary under study (Chapter 4). For this reason a summary of the 

characteristics of the members of the genus Psychrobacter is presented below. 

 

1.2.1.1 Psychrobacter 

 

The genus Psychrobacter at the moment of writing comprises 34 validly published 

species names (http://www.bacterio.cict.fr/p/psychrobacter.html) and most of them were 

retrieved from frozen habitats such as glacial ice, permafrost and sea-ice samples. 

Psychrobacter immobilis is the type species for this genus, which was originally described 

by Juni and Heym (1986) to accommodate Gram-negative, cold-adapted, oxidase-positive, 

non-motile and non-pigmented coccobacilli with strictly oxidative metabolism. The current 

taxonomic classification places the genus Psychrobacter as follows: domain Bacteria; 

phylum Proteobacteria; class Gammaproteobacteria; order Pseudomonadales; family 

Moraxellaceae (http://www.ncbi.nlm.nih.gov/taxonomy.) The family Moraxellaceae also 

includes the genera Enhydrobacter, Acinetobacter, Moraxella, Alkanindiges and 

Perlucidibaca (Staley et al., 1987; Rossau et al., 1991; Enright et al., 1994; Bogan et al., 

2003; Song et al., 2008). 

 Psychrobacter members are known for their psychrotolerance and halotolerance 

(Vishnivetskaya et al., 2000). Microorganisms adapted to cold conditions can be classified 

according to their optimum growth temperature: psychrophilic for those with optimum 

growth temperature bellow 15°C; and psychrotrophic or psychrotolerant for those able to 

grow under 15°C, though higher temperatures ranging from 15°C to 50°C are preferable 

(Morita, 1975; Cava, et al., 2009). All Psychrobacter species described so far grow well 
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between 4 to 20°C (Bowman, 2006). Only five species of this genus can grow up to 37ºC 

(Juni & Heym, 1986; Bowman et al. 1996; Kämpfer et al. 2002; Vela et al. 2003; Wirth et 

al. 2012). 

Several new Psychrobacter species have been described in the last few years, mostly 

from the increasing exploration of marine and polar ecosystems.  

There are five main characteristics useful for differentiating Psychrobacter from its 

closest relatives Moraxella and Acinetobacter. In comparison to Psychrobacter, Moraxella 

and Acinetobacter are mesophilic, unable to grow at 4°C and are not halotolerant or 

halophilic. In general, neither of these genera occurs in marine environments, as 

Psychrobacter does. Although, Psychrobacter and Moraxella are oxidade positive and 

Acinetobacter is not, the genus Moraxella is generally isolated from animal tissues and 

fluids requiring fastidious growth media (Rossau et al., 1991). 

Phenotipically, bacteria belonging to Psychrobacter genus generally form cream or off-

white, smooth, circular, convex colonies with a smooth margin and a buttery consistency. 

Occasionally, due to accumulated cytochrome proteins, the colonies of a few species 

become pale pink (Bowman et al., 1997).  

Psychrobacter species are Gram-negative, although the cells can sporadically retain the 

crystal violet dye giving the perception that they are Gram-positive. Despite of that, cells 

can be lysed easily in the presence of detergents or strong alkaline solutions unlike most 

Gram-positive cells. Additionally, cells are classified as nonmotile, with no resting bodies 

like spores or cysts (Juni & Heym, 1986).  

Salinity requirement and tolerance of 1- 6% NaCl can be observed for all 

Psychrobacter species, due to their halotolerance (Bowman et al., 1996). Only two 

Psychrobacter species can tolerate up to 15% NaCl (Romanenko et al., 2002) and 

halotolerance is one of the criteria adopted for differentiating Psychrobacter species. 

Additionally, a minority of species require sodium to start growing (Romanenko et al., 

2002; Bozal et al., 2003), although most species can grow in the absence of salt (Juni & 

Heym, 1986; Kämpfer et al., 2002; Yoon et al., 2003; Yumoto et al., 2003). In summary, 

Psychrobacter isolates are strongly stimulated to grow in growth media supplemented with 

0.5 – 1.0M of NaCl (Bowman et al., 1997).  

Generally, environmental isolates have capacity to grow on various organic rich media 

commonly used in the laboratory and clinical specimens, preferentially, grow on Brain 
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Heart Infusion (BHI) or blood/serum agar (Bowman et al., 1996; Vela et al. 2003; Wirth et 

al., 2012). Despite of that, the majority of Psychrobacter species described so far are 

unable to metabolize complex substrates, such as polysaccharides and carbohydrates 

(Bowman et al., 2006). On the other hand, proteolytic activity and acid production from 

some carbohydrates have already been reported (Maruyama et al., 2000; Denner et al., 

2001; Romanenko et al., 2002). 

Psychrobacter species often produce lipases that can breakdown a few substrates such 

as uric acid that, normally, would not be catabolized by most Gram-negative bacteria. In 

fact, Psychrobacter isolates were already reported as being able to hydrolyse uric acid and 

also grow on uric acid and its metabolites as sole carbon and energy sources (Bowman et 

al., 1996).  

Psychrobacter strains are taxonomically characterized by a polyphasic approach, 

including 16S rRNA gene sequencing, DNA–DNA hybridization, fatty acid analysis, 

morphological and biochemical analyses. Among these methods, the characterization of 

fatty acid content is determinant for the identification of the genus and also to distinguish 

species.  

Major fatty acids in Psychrobacter include the monounsaturated lipids, namely, 

palmitic acid, heptadecenoic acid and oleic acid. Their predominance is due to their low 

melting point that helps maintain cytoplasmic membrane permeability at low temperatures 

(Russell, 2003). The production of wax esters may be also related to cold-adaptive 

microorganisms and vary significantly between strains and species (Russell & Volkman, 

1980). 

Only three representative strains of the genus Psychrobacter had their genomes 

completely sequenced so far (http://www.ncbi.nlm.nih.gov/genome/?term=psychrobacter). 

Those strains belong to two validly published species, P. cryohalolentis (GenBank 

accession number CP000323) and P. articus 273-4 (Ayala-del-Río et al., 2010) and the 

third genome is from a novel Psychrobacter member not yet published as a valid species 

(Kim et al., 2012). 

Sequenced genomes vary from 2.65 to 3.51Mb and contained 2,221 to 2,713 open 

reading frames. The G+C content ranged from 42.2% to 43.4%. Approximately 80% of 

nucleotides were predicted as protein-coding regions. 
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Studies regarding the genus Psychrobacter are mainly addressed to unravel survival 

and stress conditions in response to low-temperature (Amato & Christner, 2009; Song et 

al., 2012; Novototskaya-Vlasova et al., 2012). Proteomic studies (Bakermans et al., 2007) 

as well as transcriptomic data (Bergholz et al., 2009) obtained from P. articus 273-4 

revealed different adaptation mechanisms to permafrost environment, including 

modification of transport systems, changes in translation machinery, energy metabolism, 

and others. 

The distribution and abundance of Psychrobacter exhibit geographic patterns. 

Biogeography on soils or sediments from polar, temperate and tropical environment have 

shown that Psychrobacter strains are more commonly found in the Polar Regions, but they 

can be detected in temperate and tropical sites. However, the occurrence of Psychrobacter 

populations outside cold environments were described as being associated to 

physicochemical conditions such as high salinity, presence of K+ and alkaline pH, which 

are frequently found in Polar Regions as well (Rodrigues et al., 2008). Psychrobacter 

populations from Polar Regions are different from those found in temperate and tropical 

environments, which are similar to each other (Rodrigues et al., 2008).  

 

1.2.2 Functional diversity 

 

Most biochemical processes occur at surfaces or interfaces between different 

environments (Hardy, 1982). In the particular case of aquatic systems, the bacterial activity 

within the SML can mediate the air–sea exchange of reactive gases such as methane (CH4), 

nitrous oxide (N2O), carbon dioxide (CO2) and carbon monoxide (CO) (Upstill-Goddard et 

al., 2003; Sabine et al., 2004; Conrad & Seiler, 1988). 

However, although the common conclusion of several studies is that the 

bacterioneuston is involved in gas cycling, studies characterizing the diversity of bacterial 

genes that encode enzymes related to this function are still scarce. The diversity of 

functional genes that encode subunits of methane monoxygenase (mmoX) and carbon 

monoxide dehydrogenase (coxL) in estuarine SML compared to the corresponding UW 

samples were evaluated at the Blyth estuary (Cunliffe et al., 2008). The obtained results 

revealed that mmoX genes were less diverse in SML samples and were markedly different 

from mmoX genes in the UW. A very high diversity was found among the coxL genes in 
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both water layers. Nevertheless, a large number of unique coxL genes were detected in the 

SML and UW clone libraries. Therefore, these results indicate that the estuarine SML 

bacterial population may be specifically adapted for the consumption of these trace gases 

(Cunliffe et al., 2008). 

The SML is subjected to intense solar radiation. Hence, studies regarding the resistance 

to ultra-violet radiation (UVR) on bacterioneuston communities are undoubtedly relevant. 

Even so, only a few studies have addressed this field so far and contradictory observations 

have been reported (Agogué et al., 2005b; Santos et al., 2011a; 2011b; 2012). Agogué and 

co-workers (2005b) observed no relationship between bacterial UVR resistance and water 

layers. Moreover, no significant differences were observed in the UVR inhibition on 

microbial activities of both communities (determined as [H3] leucine incorporation). 

Among the highly resistant isolates, two dominant genera were identified: 

Pseudoalteromonas and Alteromonas. Although resistance patterns were similar in 

bacterioneuston and bacterioplankton isolates, the accumulation of exopolysaccharides and 

organic compounds in the SML may provide protection to bacterioneuston against high 

level of UVR (Elasri & Miller, 1999). 

Effects of UVR on the abundance, diversity and activity of bacterioneuston and 

bacterioplankton communities from Ria de Aveiro (Portugal) were evaluated in a 

microcosm-based study (Santos et al., 2011a). After UVR exposure, bacterial abundance in 

both water layers decreased and DGGE profiles revealed greater reduction in the diversity 

of bacterioplankton compared to the bacterioneuston. On the other hand, heterotrophic 

activities were more affected in bacterioneuston indicating re-directioning of 

bacterioneuston metabolism towards stress defence/recovery strategies rather than the 

sustained heterotrophic metabolism. 

Field studies conducted by the same authors (Santos et al., 2011b) revealed that 

bacterioneuston isolates were less sensitive and recovered more rapidly from UVR stress 

than bacterioplankton isolates. Additionally, for the first time, the response of individual 

bacterioneuston isolates to UVR exposure regarding the culturability, activity and 

metabolic recovery were evaluated. 

Evidences were also gathered which indicated that bacterioplankton community was 

more affected in its bacterial abundance and DNA synthesis after UVR exposition, again 

indicating enhanced UVR tolerance of bacterioneuston (Santos et al., 2012). In terms of 



Introduction

 

22 

structure, Actinobacteria increased in abundance in bacterioneuston, remaining un-affected 

in bacterioplankton (Santos et al., 2012).  

There have been only few field studies concerning enzymatic activities in the SML 

(Kuznetsova & Lee, 2001; Mudryk & Skórczewski, 2000; 2004). As much of the dissolved 

and particulate organic carbons (DOM and POM) accumulate in the SML, studies into this 

field can shed light into organic matter degradation and nutrient cycling in aquatic 

ecosystems. Occurrence of lipolytic activity was measured in bacterioneuston and 

bacterioplankton isolates from the estuarine Lake Gardno (Mudryk & Skórczewski, 2000). 

Lipolytic bacteria were more numerous in bacterioneuston than in bacterioplankton in 

summer and autumn and reached a balance during spring season. Additionally, multiple-

lipid decomposition was generally more common in bacterioneuston than bacterioplankton. 

Despite of that, levels of lipolytic activity were higher in bacterioplankton, suggesting that 

lipolytic activity in bacterioneuston community might be compromised by the stressful 

effect of solar radiation, accumulation of pollutants and fluctuations in 

salinity/temperature. 

Differences between extracellular enzymatic peptide hydrolysis in the SML and the 

corresponding UW from Stony Brook Harbor (New-York) were investigated during one 

year (Kuznetsova & Lee, 2001). In overall, peptide hydrolysis was more effective in SML 

than UW. However differences between the two water layers were greater in winter time, 

probably reflecting seasonal variation of DOM enrichment in the SML. 

Variations in hydrolytic activity of eight extracellular activities in SML and UW in 

three zones along the estuarine Lake Gardno were measured (Mudryk & Skórczewski, 

2004). Significant differences in enzyme activity were observed, being more pronounced 

in the sea zone of the Lake Gardno, which is in fact more contaminated by sewage 

discharge from the holiday resort comparing to the less polluted mixed and freshwater 

zones. Additionally, the results indicated that the activity of esterase, aminopeptidase, α-

glucosidase, β-glucosidase and β-lactosidase reached the highest values in surface layer, 

whereas lipase, phosphatase and chitinase showed maximum activity in UW (Mudryk & 

Skórczewski, 2004). 

Bacteria that degrade PAHs in the estuarine SML from Ria de Aveiro (Portugal) were 

isolated and characterized. Among the PAH-degrading bacteria, Pseudomonas was 

dominant and screening for PAH dyoxigenases genes was only detected in two isolates 
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phylogenetically affiliated to Pseudomonas and an unknown species of the family 

Enterobacteriaceae. This result may indicate the presence of novel genes encoding PAH-

degrading enzymes in this estuarine bacterioneuston (Coelho et al., 2010).  

The common conclusion from these studies is that the bacterioneuston is closely 

involved in the cycling of at least some climatically active trace gases, and in degradation 

of organic matter and polutents promoting nutrient cycling in aquatic ecosystems.  

Other functional aspects of bacterioneuston communities, which may be related to the 

specific physicochemical properties of this layer, have been evaluated. For example studies 

have been reported comparing the prevalence of bacterial antibiotic resistance 

(Hermansson et al., 1987; Mudryk & Skórczewski, 1998; 2009; Mudryk, 2002) or 

antibiotic production (Hakvåg et al., 2008) in the SML and UW. Antibiotic producers seem 

to be enriched in the SML: 80% of the Streptomyces isolated from the water interface from 

the Trondheim Fjord (Norway) exhibited antagonistic activity against non-filamentous 

fungus, Gram-negative, and Gram-positive bacteria (Hakvåg et al., 2008). Also, several 

studies have indicated that antibiotic resistant bacteria are more abundant in the SML. 

However this aspect has been poorly explored. 

In this study an attempt to confirm the enrichment of antibiotic resistant bacteria in the 

SML of Ria de Aveiro was conducted (Chapter 5). In the same chapter the presence of 

antibiotic resistance genes and mobile gnetic elements was assessed. For this reason a 

general overview of antibiotic resistance in estuarine environments and specifically in the 

surface microlayer of estuaries is presented below. 

 

1.2.2.1 Antibiotic resistance in estuarine environments  

 

Given the fact that several anthropogenic activities are located nearby estuarine zones, 

the inappropriate disposal of their sub-products are frequently drained into the estuarine 

system, consequently this aquatic environment becomes a repository of persistent 

contaminants. The presence of toxic substances (although some of them quite diluted), 

changes in salinity and temperature due to the tides and the input of organic matter, are 

altogether factors of stress to which microbial cells have to respond very quickly. In that 

sense, an estuarine aquatic system exerts strong selective pressures, and in consequence, 
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the bacterial fraction (perhaps the most plastic part of the microbial communities) tends to 

evolve to higher levels of resistance. 

In the past few decades the uncontrolled and extensive use of antibiotics in human and 

veterinary medicine, animal husbandry, agriculture and aquaculture has caused the 

increased introduction of those antimicrobial agents in the aquatic environment, including 

estuarine systems (Hirsch et al., 1998; Golet et al., 2002). Indeed, the presence of a variety 

of antibiotics in estuarine waters resulting from human activities from surrounding areas 

has already been reported (Xu et al., 2007; Su, 2008; Zou et al., 2011; Zheng et al., 2011; 

Hoa et al., 2011). Additionally, estuarine bacterial isolates have been analyzed for their 

antibiotic resistance and strains showing multi-resistance patterns were often observed 

(Henriques et al., 2006c; Laroche et al., 2009; Evangelista-Barreto et al., 2010; Zheng et 

al., 2011; Zhang et al., 2011). 

Given the greater concentration of nutrients, pollutants (including the persistence of 

antimicrobial agents even at sub-inhibitory concentrations) and high microbial density in 

the estuarine systems and specifically in the SML, the genetic exchange may be facilitated 

and mobile genetic elements at high densities can accelerate gene recombination and 

transfer (Martinez, 2009). 

For example, integrons are recognized as efficient structures for acquisition, expression 

and dissemination of antibiotic resistance genes (ARGs) (Rowe-Magnus & Mazel, 2002). 

Those structures are common in isolates from estuarine waters, carrying gene cassettes 

conferring resistance to a wide range of antibiotics (Rosser & Young, 1999; Henriques et 

al., 2006ab; 2008; Laroche et al., 2009). For example, class I integrons were detected in 

3.6% of 3000 Gram-negative isolates from an estuary (Rosser & Young, 1999). Most of 

the variable regions in these integrons revealed that aadA1 gene was predominant, 

although many other gene cassettes were also detected including those encoding resistance 

to beta-lactams (gene oxa2), erythromycin (gene ereA), chloramphenicol (genes catB3 

and catB5),  aminoglycosides (genes aadA2, aacA4 and aacC1) and trimethoprim (genes 

dfr1a, dfrIIc, dfrV, dfrVII and dfrXII). Moreover, a significant number of integrons were 

“empty”. Thus, even in the absence of antibiotic selective pressures, empty integrons in 

bacteria from a natural habitat might persist (Rosser & Young, 1999). Similar results from 

highly polluted estuary in France were also reported (Laroche et al., 2009). 
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Other studies focused on the characterization of resistance to specific antibiotic classes 

in the estuarine environment. Beta-lactamases are enzymes able to hydrolyze the beta-

lactam ring present in the structure of all beta-lactams (Bush, 1999). The hydrolysis of this 

ring renders the compounds inactive. The production of beta-lactamases constitutes the 

most effective and the most common mechanism of resistance to beta-lactams in Gram-

negative bacteria (Kotra & Mobashery, 1998). Since beta-lactams are the most widely used 

antibiotics in human medicine and are also frequently used in veterinary and medicine, the 

dissemination of the production of beta-lactamases represents a great concern worldwide. 

DNA sequences putatively encoding enzymes included in the four classes of established 

families of beta-lactamases (Ambler, 1980) in the estuary of Ria de Aveiro (Portugal) were 

investigated (Henriques et al., 2006a). Obtained results reinforced the hypothesis that the 

environmental beta-lactamases gene pool comprises a complex mixture of ancient naturally 

occurring sequences and sequences that have been introduced or evolved more recently 

due to selective pressures resulting from human activities. 

Later, Henriques and co-workers (2006b; 2008) have investigated the occurrence and 

diversity of integrons and resistance genes for resistance to beta-lactams and tetracycline in 

the same estuary. Comparing to their former investigation based on cultured-independent 

methods, they have concluded that the culture-dependent approach underestimated the 

prevalence of ARGs in environmental samples. On the other hand, the culture-dependent 

approach allowed to obtain complementary information concerning antibiotic resistance 

phenotypes and taxa of those estuarine isolates carrying ARGs and integrons. Those 

studies provided evidences that the estuarine environment plays a pivotal role on the 

maintenance and dissemination of ARGs. 

More recently, ARGs have been recognized as new emerging contaminants in the 

environment (Pruden et al., 2006). Hence, based on the studies conducted so far it can be 

concluded that estuarine systems serve not only as important reservoirs for a variety ARGs 

(Henriques et al., 2006a), but also as dissemination vectors for spreading ARGs to open 

sea, thus promoting global pollution (Wells et al., 2007). 

The occurrence of antibiotic resistant bacteria in estuarine environments along with the 

evidences that SML supports a biofilm rich in nutrients and densely colonized might 

indicate that SML constitutes a potential hot spot for horizontal gene transfer and also for 

the dissemination of antibiotic resistance justifying the need for further investigations. 
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Particularly studies focusing on the characterization of antibiotic resistance genes and 

resistant bacteria as well as on the mobile genetic elements in the bacterioneuston are 

needed. In the specific case of mobile genetic elements, new molecular variants of broad 

host range plasmids have already been isolated from SML samples retrieved from Ria de 

Aveiro estuary (Oliveira et al., 2012). 
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2.1 Estuaries  

 

Estuaries are semi-enclosed bodies of water where freshwater from rivers and a coastal 

stream merges with the ocean. In this mixing of waters with different salt concentrations, 

many chemicals substances accumulate in the water or sediments. Hence, physico-

chemical and biological processes take place and consequently an unique habitat for birds, 

mammals, larvae (from fish and crustaceans), plants and wildlife species is formed 

(McLusky & Elliott, 2004). 

Estuaries are also known for their filtering capacity determined by the existence of 

biologically active zones with high concentration of living organisms (Golubkov et al., 

2001). However, due to the rapid population growth, uncontrolled urbanization of coastal 

areas worldwide and development of economically important harbours, estuaries have 

become affected by anthropogenic pressures resulting in ecosystem degradation, thus 

compromising their filtering and nursery capacities. 

 

2.2 Sampling site: Ria de Aveiro  

 

The estuary Ria de Aveiro has 47 km long, with a maximum width of 11 km, in the 

North-South direction, from the city of Ovar to Mira. In total this estuary has 11000 

hectares, from which 6000 are always covered with water. In this system it debouches the 

Vouga, Antuã and Boco rivers, and it has only a single communication with the sea by a 

channel between Barra and S. Jacinto (Hall et al., 1985; Dias, 1999) (Figure 2.1). It is a 

mesotrophic estuarine system with a complex topography, being separated from the sea by 

a sandy boundary and presenting a complex net of internal canals. The water exchange 

with the ocean is 89 Mm3 while the freshwater entrance media, during the equivalent wave 

period, is 1.8 Mm3 (Almeida et al., 2001).   

Over time, Ria de Aveiro has been the target of several pollutant discharges, being the 

main sources of contamination the sludge waste from Aveiro’s city and the diffuse 

pollution associated to Aveiro’s seaport activities, industrial explorations, aquaculture 

tanks and pollutants from farming fields nearby (Henriques et al., 2004).  

Even so, this estuary has a great economical importance due to professional and 

recreational fishing and aquaculture explorations, which are being intensively developed in 
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the recent years. Recent efforts have been made to solve the pollution problem in order to 

recycle and preserve the water quality and the ecosystem health. 

 

Figure 2.1 Estuary of Ria de Aveiro, Portugal 

 

2.3 Objectives of this thesis 

 

The main aims of this study were to characterise and compare the bacterioneuston and 

bacterioplankton communities inhabiting the estuarine environment Ria de Aveiro.  

 

Specific aims were: 

 

- In Chapter 3 culture-dependent and culture-independent methodologies were 

applied to characterise the phylogenetic structure of the estuarine bacterioneuston 

and to compare it to the corresponding bacterioplankton.   

 

- Also in Chapter 3 the spatial and temporal short-term variability of both 

communities was assessed using the same methodologies. 

 

- In Chapter 4 the diversity of Psychrobacter populations inhabiting SML and UW 

in Ria de Aveiro were evaluated by analysing genus-specific clone libraries and 

fingerprinting-based methods. In this chapter we also analysed a collection of 

Psychrobacter strains obtained from both layers. 
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- In Chapter 5 the prevalence of cultivable antibiotic-resistant bacteria in the SML 

and UW in Ria de Aveiro was assessed. Also the antibiotic resistance profiles of 

SML and UW isolates were compared.  

 

- In Chapter 5 we also investigated the occurrence of genes encoding antibiotic 

resistance as well as the presence and diversity of integrons in isolates from both 

water layers. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Spatial and temporal analysis of estuarine 

bacterioneuston and bacterioplankton using culture-

dependent and culture-independent methodologies
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3.1 Introduction  

 

A thin (roughly 1 to 1000 µm) surface film was reported to form at the interface 

between marine environments and the atmosphere (Liss et al., 1997). This physical 

boundary has commonly been designated as sea-surface microlayer (SML) albeit similar 

films occur at the surface of freshwater and estuarine systems (Cunliffe et al., 2008; 

Hervàs & Casamayor, 2009). SML ecological relevance is well recognized and derives 

from the fact that it covers about 70% of the Earth’s surface and strongly impacts the 

exchange of gases and matter across the air-water interface (Maki, 2002; Zemmelink et 

al., 2005). Specifically, SML has a large effect on water–air exchange of gases directly 

related to climate changes, such as carbon monoxide, carbon dioxide, methane and 

dimethyl sulfide (Conrad & Seiler, 1988; Upstill-Goddard et al., 2003; Zemmelink et 

al., 2005; Cunliffe et al., 2008).  

The SML is distinct from underlying waters (UW) in terms of its physical and 

chemical properties (Cunliffe et al., 2011; Liss et al., 1997). For example, this layer has 

been described as a place of accumulation of organic matter and of a variety of 

pollutants including hydrocarbons and heavy metals (Cincinelli et al., 2005; Cuong et 

al., 2008).  

Based on these distinct characteristics it has been hypothesized that SML also 

constitutes a unique ecosystem, which includes distinct biological communities (Maki, 

2002). The bacterial community present within this layer is usually referred to as 

bacterioneuston (Naumann, 1917). In the past, the SML has been reported to comprise 

more abundant and active bacterial communities than subjacent waters (Sieburth et al., 

1976; Hardy, 1982). Regarding phylogenetic composition, while some authors reported 

considerable compositional differences between bacterioneuston and bacterioplankton 

(Franklin et al., 2005; Cunliffe et al., 2008) others did not find relevant dissimilarities 

(Agogué et al., 2005a; Obernosterer et al., 2008;). Inconsistencies between studies have 

been related to the use of different SML sampling devices (Cunliffe et al., 2009a; 

Cunliffe et al., 2011). Though, spatial and temporal factors might contribute to the 

unevenness in the SML formation and thickness and accordingly to the variability in the 

structure and functional properties of bacterioneuston (Peltzer et al., 1992; Santos et al., 

2009).  
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Estuaries may represent one of the most favorable habitats for the establishment of 

distinct bacterioneuston communities since they consist on semi-enclosed water bodies, 

usually strongly influenced by anthropogenic activities, often becoming eutrophicated 

and concentrating high levels of pollutants (Keddy, 2000). In these systems, terrestrially 

derived material probably contributes significantly to the formation of distinct surface 

layers. In fact, within estuaries the occurrence of visible surface slicks is a common 

phenomenon (Liss et al., 1997).  

The properties of SML may vary significantly along time and space. Therefore it 

can be hypothesized that the degree of similarity between adjacent bacterioneuston and 

bacterioplankton would differ between sampling sites and dates. To confirm this 

hypothesis, in this study, the phylogenetic composition of bacterioneuston and 

bacterioplankton communities from a highly polluted estuarine system (Ria de Aveiro, 

Portugal) was compared by combining culture-independent and culture-dependent 

approaches. Nearly all studies conducted in the last decade examined differences 

between SML and UW communities using culture-independent methods. However, 

specific properties of SML, namely accumulation of organic matter at this interface 

(Cunliffe & Murrell, 2009), may conduce to the establishment of a distinct and highly 

active community of culturable heterotrophic bacteria. Thus, this community was also 

considered during this study.  

Other authors (Cunliffe & Murrell, 2009) have hypothesized that microorganisms 

with ability to form biofilms have a selective advantage in the gelatinous film that SML 

is. For that reason, efforts were made to verify this hypothesis in what concerns 

Aeromonas and Pseudomonas, two genera whose members are commonly found in 

estuarine waters and have been frequently associated with biofilm formation.   

 

3.2 Material and methods 

 

3.2.1 Site description and sample collection 

 

Ria de Aveiro is a shallow estuary on the north-west coast of Portugal (40º38’N, 

8”45’W), about 45 Km long and 8.5 Km wide (Figure 3.1). Samples were collected at 

three sites: Cais do Chegado (CC), where the main contamination sources are industrial 

effluents, Costa Nova (CN), mainly impacted by urban effluents, aquacultures and run-
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off from agriculture fields and Cais do Sporting (CS) subjected to anthropogenic 

pressure mainly due to the presence of harbor facilities (Figure 3.1).  

Samples were taken during 4 campaigns in May (C1), July (C2), September (C3) 

and October 2008 (C4), with gentle weather conditions and wind below 3-4 m/s. For 

each campaign, SML and UW samples were collected always at low tide, during day 

(maximum light) and during night (minimum light). A water layer of 60-100 µm was 

 

 

 

Figure 3.1 Map of Ria de Aveiro showing sampling sites in Costa Nova (CN), Cais do 

Sporting (CS) and Cais do Chegado (CC). 
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collected with a 0.25 m wide x 0.35 m long and 4 mm thick glass plate as previously 

described (Agogué et al., 2004; Santos et al., 2009). Prior to collection, the plate was 

washed with ethanol, sterile Milli-Q water and several times with the respective SML 

water. To minimize the contamination with UW, water draining from the plate for the 

first 20 s was rejected. Bacterioplankton was collected at approximately 0.4 m depth in 

2 L autoclaved bottles. Samples were kept in cold and dark conditions during transport 

and were processed within 1 h after sampling. Salinity was determined with a WTW 

Conductivity Meter Model LF 196 (WTW, Weinheim, Germany) and measured using 

the Pratical Salinity Scale.  

 

3.2.2 Enumeration, isolation and identification of culturable 

heterotrophic bacteria 

 

Water samples were serially diluted in 0.9% NaCl and aliquots of 100 µL of each 

dilution were spread onto 4 replicate plates of Estuarine Agar (EA; Weiner et al., 1980) 

and GSP (Glutamate Starch Phenol Red Agar, Pseudomonas/Aeromonas selective agar) 

media. Colony-forming units (CFU) were counted after 3 (GSP plates) and 5 days (EA 

plates) of incubation at 22°C in the dark. 

Colonies were randomly selected from each sample, purified and maintained on the 

same media. Approximately the same number of isolates was selected from each sample 

and, whenever possible, colonies were picked from plates corresponding to the same 

dilution. DNA extraction was performed using the Genomic DNA Extraction Kit (MBI 

Fermentas, Vilnius, Lithuania). Phylogenetic affiliation of the bacterial isolates was 

established by 16S rRNA gene sequence analysis. Amplification was performed with 

universal bacterial primers 27F and 1492R as described previously (Lane, 1991). PCR 

products were purified with the Jetquick PCR Product Purification Spin Kit (Genomed, 

Löhne, Germany) and used as template in the sequencing reaction carried out by the 

company Stab-Vida (Oeiras, Portugal). The sequence similarity search and phylogenetic 

affiliation were performed using the BLAST program (Altschul et al., 1997).  

The 16S rRNA gene sequences from the SML and UW culture collections were 

processed by using the analysis pipeline on the Ribosomal Database Project (RDP) 

website (Cole et al., 2009; http://rdp.cme.msu.edu). Operational taxonomic units 

(OTUs) and rarefaction curves were calculated. Classical indices were used to estimate 



Spatial and temporal analysis of estuarine bacterioneuston

 
 

38 

richness (Chao’s richness estimator) and diversity (Shannon-Wiener index) for each 

culture collection and to determine the similarity degree between culture collections 

(Bray-Curtis similarity index). All indices were calculated using the EstimateS software 

(version 7; available at http://viceroy.eeb.uconn.edu/estimates). 

 

3.2.3 DNA extraction from water samples and community analysis 

 

For DNA extraction 200 mL water samples from SML and UW were filtered 

through 0.2-µm-pore-size filters (Poretics Products). DNA extraction was performed 

using the Genomic DNA Extraction Kit (MBI Fermentas, Vilnius, Lithuania) as 

described previously (Henriques et al., 2004).  

For each sample, DGGE was performed on DNA extracts to obtain bacterial and 

Aeromonas-specific molecular fingerprints of the SML and UW. The V3 region of 

bacterial 16S rRNA gene was amplified using the primers 338F and 518R as previously 

described (Henriques et al., 2006a). A fragment of the gyrB gene was amplified with 

Aeromonas-specific primers gyrB-F and gyrB-R following the protocol described by 

Calhau et al. (2010). For the gyrB gene, a reamplification approach was required to 

obtain sufficient PCR product for subsequent analysis. For this, a second PCR was 

conducted using 0.5µL of the first PCR product as template and the same primers and 

conditions. 

A GC clamp was attached to the 5’ end of the forward primers in order to prevent 

complete melting of the PCR products during subsequent DGGE analysis (Muyzer et 

al., 1993). The PCR reactions were carried out in a Bio-Rad iCycler Thermal Cycler 

(Bio-Rad Laboratories, Hercules, CA, USA) using Taq polymerase, nucleotides and 

buffers purchased from MBI Fermentas (Vilnius, Lithuania).  

PCR products were directly applied onto 8% polyacrylamide gels (37.5:1, 

acrylamide/bisacrylamide) in 0.5X TAE buffer (20 mmol/L Tris–acetate, pH 7.4, 10 

mmol/L sodium acetate, 0.5 mmol/L Na2EDTA) with urea and formamide as 

denaturants. Linear denaturing gradients ranged from 37 to 65% for 16S rDNA-DGGE 

and from 45 to 70% for gyrB-DGGE (100% corresponds to 7M Urea and 40% 

formamide). Electrophoresis was performed on a D-Code Universal Mutation Detection 

System (Bio-Rad, USA) at 60°C; initially a constant voltage of 20 V was applied for 15 

min followed by 75 V during 16 hours. After electrophoresis, the gels were stained for 5 
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min with ethidium bromide and then rinsed for 20 min in distilled water. Gel images 

were acquired using a Molecular Image FX apparatus (Bio-Rad Laboratories, Hercules, 

California, USA). 

Gel images were analyzed with the Diversity DatabaseTM Software (Bio-Rad 

Laboratories, Hercules, California, USA). Band automatic assignment was carefully 

checked and, when necessary, manually edited. Taking into account the 

presence/absence and intensity of individual bands in each lane, a similarity matrix was 

constructed using the Bray-Curtis measure. Cluster analysis was performed using the 

PRIMER v6 software (Clarke & Gorley, 2001); the same software was used to calculate 

the Shannon–Wiener index (H’). Dendrograms were generated using the group average 

method. 

 

3.2.4 Identification of DGGE bands 

 

SML-specific bands, UW-specific bands and bands displaying different intensities 

in SML and UW profiles were selected for determination of its nucleotide sequence. 

Bands were aseptically excised, re-amplified and checked for accuracy in DGGE gels. 

The corresponding PCR products were cloned using a TA cloning kit (Invitrogen, 

California, USA) according to the manufacturer’s instructions. Subsequently, at least six 

inserts were checked by PCR-DGGE and subjected to sequencing analysis as described 

above, using vector-specific primers. Band sequences were compared to the GenBank 

nucleotide data library using the BLAST software (Altschul et al., 1997) in order to 

determine their closest phylogenetic relatives. 

 

3.2.5 Nucleotide sequence accession numbers 

 

Sequences representing culturable OTUs were deposited in GenBank under the 

following accession numbers: JQ072029 to JQ072088. Sequences from DGGE bands 

were deposited under the following accession numbers: JQ237824 to JQ237846. 

 

3.3 Results 

 

3.3.1 Abundance and phylogenetic diversity of heterotrophic bacteria 
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The average number of CFUs per mL was highly variable between sites and 

campaigns (Figure 3.2). However, the mean CFU concentrations obtained for the SML 

samples were usually 2 to 8 times (and exceptionally up to 75 times) higher than the 

mean concentration of CFU in the UW samples. These differences were consistently 

more pronounced in site CN and in the third campaign.  

 

Figure 3.2 Fluctuations in mean CFU concentrations (CFU/mL) for SML and UW samples collected in 

4 campaigns (C1 to C4) and plated in Pseudomonas/Aeromonas selective agar (GSP) and 

estuarine agar (EA) media. 
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A total of 352 isolates were recovered from water samples, being 168 from SML 

samples and 184 from UW samples. These isolates, based on identity criteria of >97% 

at the 16S rRNA gene sequence, could be categorized into 60 operational taxonomic 

units (OTUs) (Table 3.1). Two OTUs were dominant and included 39% of the isolates 

from both the SML and UW samples. OTUs containing a single isolate represented 

46.7% of the total OTUs. A similarity value of 69% between the two culture collections 

was obtained using the Bray-Curtis index. 

Based on phylogenetic analysis bacterial isolates were assigned to five phyla within 

the domain Bacteria, namely Proteobacteria, Bacteroidetes, Deinococcus-Thermus, 

Firmicutes, and Actinobacteria, and represented 20 orders (Figure 3.3; Figure 3.4). The 

positively identified strains belonged to 43 bacterial genera (Table 3.1). Additionally, 

isolates included into 3 OTUs (isolated from both layers) could not be identified at 

genus level and were affiliated with families Enterobacteriaceae (2 OTUs) and 

Micrococcaceae (1 OTU). The most common genera were Psychrobacter (89 isolates) 

and Acinetobacter (58 isolates). Bacteria belonging to the genera Pseudomonas (43 

isolates), Aeromonas (25 isolates) and Shewanella (22 isolates) were also frequently 

isolated. Most pronounced differences between SML and UW samples were observed 

for order Actinomycetales (Figure 3.3; Table 3.1) namely for genera Agrococcus (12 

isolates from UW) and Kocuria (5 isolates from UW), and for genus Vibrio (8 isolates 

from UW and 1 isolate from SML). On the other hand one of the OTUs assigned to the 

Pseudomonas genus was more abundant in the SML (20 SML isolates and 7 UW 

isolates) (Table 3.1). 

 

3.3.2 DGGE analysis of bacterial community structure 

 

DGGE fingerprinting was used to compare the bacterial community structure in 

SML and UW samples. During preliminary experiments, DNA extractions and 

subsequent PCR and DGGE analysis were carried out in triplicate. No detectable 

differences between profiles were observed. Also, analysis of DGGE profiles revealed 

negligible variability (<6%) between samples (n=5) collected within a limited area of 

approximately 10 m2 for each sampling site (data not shown).  

Subsequently, the sampling sites were visited four times during the warm season 

(from May to October) and temperature and salinity values for each sampling site/date 
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are presented in Table 3.2. As previously described for this estuarine system (Henriques 

et al., 2006a), temperature values were relatively stable in time and space while clear 

differences in salinity values between sampling sites and sampling dates were 

frequently observed (Table 3.2).  
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Table 3.1.Summary of bacteria isolated from SML and UW samples.  

Number of isolates in 

OTU
c
 Phylogenetic group 

Representative isolate
a, b

 

(accession nº) 
Closest Relatives (accession nº) 

Sequence 

identity (%) 
SML UW 

Agrococcus ENNP5_III (JQ072029) Agrococcus citreus (AB279547) 99 0 12 
Arthrobacter ENDN1_III (JQ072030) Arthrobacter agilis (EU730943.1) 98 1 0 
 ENNN6_I (JQ072031) Arthrobacter arilaitensis (EU240951.1) 100 1 1 
Brevibacterium ECNP2_I (JQ072032) Brevibacterium sp.(FN392692.1) 99 0 1 
Corynebacterium ECNN8_I (JQ072033) Corynebacterium casei (DQ361013.1) 99 1 0 
Kocuria ESDP1_III (JQ072034) Kocuria sp. (FJ889675.1) 100 0 5 
Microbacterium ENNP2_I (JQ072035) Microbacterium sp. (FJ765512.1) 99 0 1 
Micrococcus ENDN2_III (JQ072036) Micrococcus sp. (FJ607363.1) 99 2 2 
Micrococcaceae ESNP6_II (JQ072037) Micrococcus sp. (FJ607363) 99 2 6 
Aerococcus GCNN9_I (JQ072038) Uncultured bacterium (GQ091598.1) 100 1 0 
Bacillus ESDN8_II (JQ072039) Bacillus cereus (EF488087.1) 99 2 0 
 ENDP2_I (JQ072040) Bacillus pumilus (GU125637.1) 100 0 1 
 ESDN10_III (JQ072041) Bacillus sp. (AF440439.2) 99 1 0 
Exiguobacterium ESDP2_III (JQ072042) Exiguobacterium homiense (FJ999945.1) 100 0 2 
Planococcus ENDN3_II (JQ072043) Planococcus sp. (FJ237405.1) 99 2 0 
Staphylococcus GSDN10_II (JQ072044) Staphylococcus equorum (EU855190.1 ) 100 1 2 
Cyclobacterium  ENNN10_III (JQ072045) Cyclobacterium amurskyense (FJ229465.1) 100 1 0 
Algoriphagus ECNP10_I (JQ072047) Algoriphagus aquatilis (EU313811.1) 97 0 1 
Leeuwenhoekiella ENDP4_III (JQ072048) Uncultured Leeuwenhoekiella (FN433319.1) 98 0 1 
Flavobacterium GNNN5_III (JQ072049) Flavobacterium sp. (AM934639.1) 97 1 0 
Olleya ESDN4_II (JQ072050) Olleya marilimosa (FJ015035.1) 100 1 0 
Deinococcus ESNP7_II (JQ072051) Deinococcus radiopugnans (NR_026403.1) 99 0 1 
Brevundimonas GSDP8_I (JQ072052) Brevundimonas sp. (FJ544245.1) 100 0 1 
 GCNP1_II (JQ072053) Brevundimonas sp. (DQ177489.1) 100 0 2 
 GNDN8_III (JQ072054) Brevundimonas sp. (DQ310472.1) 99 1 0 
Erythrobacter ENDN8_III (JQ072055) Erythrobacter citreus (EU440970.1) 100 3 1 
Agrobacterium  GCNN2_III (JQ072056) Agrobacterium tumefaciens (FJ785222.1) 99 1 0 
Pseudorhodobacter ENDN8_I (JQ072057) Pseudorhodobacter incheonensis (DQ001322.1) 100 2 2 
Paracoccus  ESDP1_II (JQ072058) Paracoccus sp. (AY167832.1) 99 0 2 
Devosia ECDN8_I (JQ072046) Devosia sp.(FR731130.1) 97 1 0 
Alcaligenes GSNN1_I (JQ072059) Uncultured Alcaligenes sp. (DQ168833.1)  99 2 1 
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Achromobacter GNDN8_I (JQ072060) Achromobacter sp. (GU138383.1) 97 1 0 
Comamonas GCNN4_I (JQ072061) Uncultured bacterium (EU468035.1) 99 1 0 
Delftia GCNP4_II (JQ072062) Delftia sp. (AB461757.1) 100 0 1 
Arcobacter GCDN6_III (JQ072063) Arcobacter sp. (EF419216.1) 98 1 0 
Aeromonas GNDP3_I (JQ072064) Aeromonas hydrophila (GQ470995.1) 100 14 11 
Alteromonas ESDN8_III (JQ072065) Alteromonas sp. (EF061431.1) 99 1 0 
Shewanella GCDN4_III (JQ072066) Shewanella sp. (FJ025779.1) 99 1 1 
 ESDN7_III (JQ072067) Shewanella sp. (EU979479) 98 11 9 
Marinobacter ECDP4_III (JQ072068) Marinobacter sp. (FJ903190.1) 99 0 1 
Pseudoalteromonas ECNP10_III (JQ072069) Uncultured Pseudoalteromonas (FJ695595) 100 1 1 
 ESNP3_I (JQ072070) Pseudoalteromonas sp. (AM913917.1) 99 0 1 
Rheinheimera ENNN3_I (JQ072071) Rheinheimera sp. (AM110966.1) 99 2 4 
Erwinia  ECDN2_I (JQ072072) Erwinia sp.( AY690711.1) 99 3 0 
Halomonas GSNN9_III (JQ072073) Halomonas sp. (FJ386522.1) 100 2 0 
Marinomonas GNNN6_I (JQ072074) Marinomonas sp. (AY745826.1) 99 1 2 
Acinetobacter ENDN8_II (JQ072075) Uncultured Acinetobacter (DQ234186.2) 99 23 25 
 ECDP6_I (JQ072076) Acinetobacter sp. (AF336348.1) 99 0 2 
Pseudomonas GNDP9_III (JQ072077) Pseudomonas cf. stutzeri (AJ244724.1) 99 6 10 
 GCDN9_III (JQ072078) Pseudomonas sp. (GQ868355) 100 20 7 
 GCNP2_III (JQ072079) Pseudomonas sp. (AB461633.1) 100 0 1 
Psychrobacter GNDP2_II (JQ072080) Psychrobacter faecalis (EU370413.1) 100 43 46 
Vibrio GNNN3_III (JQ072081) Vibrio sp. (AM913925.1) 100 1 5 
 GNNP7_III (JQ072082) Vibrio diazotrophicus (NR_026123.1) 100 0 2 
 ECNP1_III (JQ072083) Vibrio sp. (AM902263) 99 0 1 
Lysobacter GCNP3_II (JQ072084) Uncultured bacterium (JF168457.1) 99 0 1 
Stenotrophomonas GCDP10_III (JQ072085) Stenotrophomonas rhizophila (GQ359325.1) 100 3 1 
 GCDP4_I (JQ072086) Stenotrophomonas sp. (EU073094.1) 100 0 1 
Enterobacteriaceae ENDP9_III (JQ072087) Hafnia alvei (DQ412565.1) 99 3 2 
 GNDN3_I (JQ072088) Uncultured bacterium (GQ069695.1) 99 3 4 
a Isolates were assigned a code where first letter represents the culture medium (GSP or EA), the second letter represents the sampling site (CC, CN or CS), the third letter 

represents the sampling period (Night or Day) and the fourth letter represents the sampled community (Neuston or Plankton). Letters are followed by an arbitrary number (1 

to 10) and the field survey number (I, II or III). 
b One isolate was chosen to represent each defined OTU and the corresponding 16SrDNA sequence was deposited in the GenBank database. 
c The data represent the number of isolates that were assigned to a particular OTU within SML and UW samples.  
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Figure 3.3 Stacked columns comparing the contribution at order level to the composition of 

culturecollections representing UW and SML samples.  

 
 
Table 3.2. Values of temperature (ºC) and salinity measured during all campaigns in all sampling sites 

at day and night period. 

Temperature (ºC) Salinity 
Sampling site Campaign 

Day Night Day Night 

C1 20.2 20.6 20.6 20.8 
C2 20.2 20.6 23.5 23.5 
C3 19.6 20.5 27.7 27.5 

CN 

C4 19.4 19.8 27.9 27.8 
C1 21.3 21.7 16.6 16.6 
C2 21.3 21.7 18.7 18.7 
C3 20.9 19.8 28.9 29.5 

CC 

C4 21.6 19.6 29.7 30.1 
C1 19.7 20.8 26.1 26.1 
C2 19.7 20.8 29.2 29.3 
C3 18.8 18.8 33.1 33.3 

CS 

C4 19.0 19.2 33.1 33.1 
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16S rDNA DGGE profiles are shown in Figure 3.5. The number of DGGE bands 

detected in each profile ranged from 36 to 46 in SML samples and from 35 to 46 in UW 

samples. Also, overall community diversity did not consistently differ between SML 

and UW samples: the range of the Shannon–Wiener index values was from 1.52 to 1.61 

(mean 1.55) for SML communities and from 1.48 to 1.60 (mean 1.55) for UW 

communities. Finally, for each campaign, a high number of common bands between all 

profiles could be identified (Figure 3.5).  

In fact, cluster analysis showed that the similarity between all profiles was generally 

high (>50% according to Bray-Curtis measure; Figure 3.5). However, in spite of a 

number of exceptions, for each campaign, samples from the same sampling site 

clustered primarily by layer (samples collected from each layer during day and night 

frequently clustered together). Well-defined spatial-driven clusters, which included all 

samples collected from each site, were observed for the second campaign (sites CC and 

CN) and for the third campaign (sites CC and CS). On the other hand, temporal 

compositional shifts were clearly identified for all sampling sites. 

Fourteen bands were excised from the 16S rDNA DGGE profiles obtained from 

SML samples (Figure 3.5). Bands 1, 2, 4, 5, 6, 8 and 12 were also detected in UW 

profiles but were more pronounced in SML profiles while bands 3, 7, 9, 10, 13 and 14 

were only detected in SML samples. Taking into account band intensity, some of the 

excised bands seem to represent dominant phylotypes (1, 4, 5, 6, 7, 8 and 10). Eight out 

of 14 bands were excised from profiles from site CS, including 4 SML-exclusive bands 

(3, 7, 13 and 14). The recovered sequences had high similarity to known bacteria or 

environmental sequences. However, it was interesting that 4 out of 6 SML-exclusive 

bands shared only 94% identity with previously reported sequences. Most of the 

sequenced bands had closest relatives originating from aquatic environments (Table 

3.3). Phylogenetically, the sequences were distributed in four groups: Cyanobacteria (3 

bands), Bacteroidetes (2 bands), Actinobacteria (1 band) and Gammaproteobacteria (3 

bands). Four clones (2, 3, 4 and 7) could only be assigned to domain Bacteria and 1 

sequence was most closely related to chloroplast sequences. 
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Figure 3.4 Neighbour joining phylogenetic trees showing the relationships among 16S rRNA gene 

sequences from bacteria isolated during this study, DGGE bands and sequences obtained 

from GenBank (accession numbers of these sequences are given in parentheses) affiliated 

with Gram-positive bacteria (a), other phylogenetic groups (b) and Proteobacteria (c). 

Distances were corrected using the Jukes-Cantor method. Bootstrap values > 50% are 

indicated at the nodes for 1000 replicates. The bar indicates the estimated sequence 

divergence. 

 

 

 

(a) (b) 
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Figure 3.4 Continued 

(c) 
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3.3.3 DGGE analysis of aeromonads community structure 

 

Aeromonas-specific DGGE profiles were obtained for samples collected during the 

first, second and fourth campaign (Figure 3.6). The number of DGGE bands detected in 

each profile ranged from 19 to 25 in SML samples and from 15 to 24 in UW samples. 

According to cluster analysis, the variability between these profiles was higher (>70%) 

than between bacterial profiles (>50%) (Figure 3.6). However, no systematic difference 

was observed between SML and UW Aeromonas communities. Also, no strong spatial- 

driven differences were observed except for the first campaign where samples from CC 

and CN formed well-defined clusters. 

From Aeromonas-specific profiles nine bands were sequenced. Six bands were 

retrieved from UW and 3 from SML profiles (Figure 3.6). Most (5 out of 9) bands were 

selected from sampling site CS. Two bands (Aer–3, Aer–4) appear to be exclusive from 

SML samples and 5 bands were putative UW-exclusive (Aer–5, Aer–6, Aer–7, Aer–8 

and Aer–9). All band sequences affiliated with members of the Aeromonas genus and 

all sequences were at least 94% identical to the database entries (Table 3.3). 

 

3.4 Discussion 

 

3.4.1 General features of Ria de Aveiro bacterial communities 

 

The analysis of DGGE profiles obtained during this study in terms of number of 

bands and band positions revealed the presence of complex and highly stable 

bacterioplankton and bacterioneuston in Ria de Aveiro. The observed spatial stability is 

in accordance with previous studies, which reported the dominance of several 

widespread phylotypes in this estuary (Henriques et al., 2006a). However this apparent 

stability may be restricted to dominant groups since 16S rDNA DGGE is able to 

retrieve only sequences that are present in at least 0.5-1% of the total cells in the sample 

(Muyzer et al., 1993).  

The culture-based approach led to the successful cultivation of a considerable 

diversity of heterotrophic bacteria included in 5 phyla. The analysis of the 16S rRNA 

gene sequences indicates that potentially new putative species have been cultured since 

a number of sequences shared <98% identity with any previously cultured isolate. 
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Figure 3.5 DGGE analysis of the bacterial diversity in UW and SML samples collected 

in May (a), July (b), September (c) and October (d). Lane labels indicate 

samples collected from sampling sites CN, CC and CS, during day (D) and 

night (N). Arrows indicate DGGE bands for which the DNA sequence was 

determined. For each gel a 16S rDNA-based cluster diagram is presented 
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   Figure 3.5 Continued 
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Additionally several sequences affiliated with previously observed but not yet 

formally described taxa. In general, the dominant bacterial groups found in SML and 

UW culture collections were similar to those commonly cultivated from estuarine water 

(Frette et al., 2004; Agogué et al., 2005a).  

The most frequently retrieved genera from both the SML and UW were 

Psychrobacter and Acinetobacter followed by Pseudomonas, Aeromonas and 

Shewanella. Most of the aeromonads were isolated from the selective medium but 

representatives of the other genera were abundant in estuarine agar indicating that they 

most likely represent relevant members of the culturable community.  

The abundance of Psychrobacter was unexpected in view of the present knowledge 

about this genus: these microorganisms have been isolated mainly from cold 

environments and were thought to be only marginally successful in other environments 

(Rodrigues et al., 2009). Contamination with hydrocarbons has been related to 

Psychrobacter enrichment in several previously published studies (Harwati et al., 2007; 

Prabagaran et al., 2007; Giudice et al., 2010).  

In our study, Psychrobacter isolates were predominantly retrieved from the site CS, 

mainly impacted by harbor activities and where contamination with hydrocarbons has 

been previously confirmed (Coelho et al., 2010). 
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Table 3.3 Phylogenetic affiliation of 16S rDNA (1 to 14) and GyrB (Aer-1 to Aer-9) sequences retrieved from DGGE bands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Band n° Accession n° Sample Closest relative (accession n°) Origin 
Phylogenetic 

affiliation 

Similarity 

(%) 

1 JQ237824 CC-SMLD Uncultured cyanobacterium (FJ484336.1) Phreatic sinkhole - Mexico Cyanobacteria 100 
2 JQ237825 CS-SMLD Uncultured bacterium (EU273177.1) Taihu lake - China Bacteria 99 
3 JQ237826 CS-SMLD Uncultured bacterium (FJ390418.1) Miyun water reservoir - China Bacteria 94 
4 JQ237827 CS-SMLD Uncultured bacterium (FJ415271.1) Guanting water reservoir - China Bacteria 100 
5 JQ237828 CS-SMLD Chloroplast (AY663923.1) Coastal water - China Chloroplast 99 
6 JQ237829 CC-SMLD Uncultured cyanobacterium (FJ902638.1) Phreatic Sinkholes - Mexico Cyanobacteria  98 
7 JQ237830 CS-SMLD Uncultured bacterium (FJ390418.1) Miyun water reservoir - China Bacteria 94 
8 JQ237831 CS-SMLD Uncultured Flavobacteria (AY712378.1) Salt marsh - Sapelo Island - USA Bacteroidetes 100 

9 JQ237832 CN-SMLN 
Uncultured Acidimicrobiaceae 

(FJ228233.1) 
Sediments of acidic mine pit lake 
Brandenburg - Germany 

Actinobacteria 94 

10 JQ237833 CN-SMLN Uncultured cyanobacterium (FJ828481.1) Eutrophic lake -USA Cyanobacteria 99 
11 JQ237834 CC-SMLN Alteromonas sp (FJ652055.1) Seawater desalination membrane  γ-Proteobacteria 100 
12 JQ237835 CN-SMLD Alteromonas sp. (AB491744.1) Settlement substrata - Japan γ-Proteobacteria 100 
13 JQ237836 CS-SMLD Salinivibrio sp. (AY839795.1) Solar salterns - Korea γ-Proteobacteria 94 

14 JQ237837 CS-SMLD 
Uncultured Flavobacteriaceae 
(AM501868.1) 

Lagoon anoxic sediments - Italy Bacteroidetes 100 

Aer-1 JQ237838 CN-UWN Aeromonas veronii (AB473092.1) Sputum γ-Proteobacteria 98 
Aer-2 JQ237839 CS-SMLD Aeromonas hydrophila (AY968042.1) Activated sludge - China γ-Proteobacteria 99 

Aer-3 JQ237840 CN-SMLN 
Aeromonas allosaccharophila 
(FJ238496.1) 

Wastewater treatment plant - 
Portugal 

γ-Proteobacteria 96 

Aer-4 JQ237841 CC-SMLD Aeromonas sp. ER.1.21 (FJ238503.1) 
Wastewater treatment plant - 
Portugal 

γ-Proteobacteria 99 

Aer-5 JQ237842 CS-UWD Aeromonas veronii (AB473092.1) Sputum γ-Proteobacteria 98 
Aer-6 JQ237843 CS-UWN Aeromonas bestiarum (AY987521.1) Ditch water γ-Proteobacteria 95 
Aer-7 JQ237844 CS-UWN Aeromonas eucrenophila (AY101776.1) Fresh water fish γ-Proteobacteria 94 

Aer-8 JQ237845 CC-UWD Aeromonas caviae (JF938610.1) 
Wastewater treatment plant - 
Portugal 

γ-Proteobacteria 98 

Aer-9 JQ237846 CS-UWN Aeromonas veronii (AB473092.1)  Blood γ-Proteobacteria 98 
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Figure 3.6 DGGE analysis of Aeromonas-specific gyrB amplicons in UW and SML samples collected in 

May (a), July (b) and October (c). Lane labels indicate samples collected from sampling sites 

CN, CC and CS, during day (D) and night (N). Arrows indicate DGGE bands for which the 

DNA sequence was determined. For each gel a 16S rDNA-based cluster diagram is presented. 

 

The ability of members of the genus Acinetobacter to survive under dry conditions and 

to be easily transported by air is well known (Hervàs et al., 2009; Reche et al., 2009). 

Additionally, the presence of airborne Acinetobacter-related bacteria in SML has 

previously been suggested (Hervàs & Casamayor, 2009). However, despite being a 

dominant genus in our samples, differences between SML and UW in terms of abundance 

or diversity of Acinetobacter were not confirmed in this study.  

Debates about the shortcomings associated with culture-dependent and culture-

independent studies have been frequently carried out and reported. Because most of all the 

studies that examined differences between SML and UW communities in the last decade 

used culture-independent methods we decided to combine both approaches. 

Despite the shortcomings commonly associated with 16S rDNA DGGE (Henriques et 

al., 2006a) this technique has been widely used especially to study spatial and temporal 

dynamics and to detect relevant compositional differences between communities. The 
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limitations of culture-dependent strategies have also been extensively discussed (Laiz et 

al., 2003; Tamaki et al., 2005) and we are aware that the cultivated strains may represent 

only a small and biased fraction of the total diversity.  

For example the high proportion of Gammaproteobacteria obtained in this study can be 

in part biased, since strains able to rapidly grow on agar media may have been favored by 

the applied methodology.  

In fact, culture-independent studies previously conducted reported the dominance of 

Alphaproteobacteria and Bacteroidetes on water samples from Ria de Aveiro (Henriques et 

al., 2004; Henriques et al., 2006a). This last phylum was particularly underrepresented 

within our culture collections suggesting the occurrence of Bacteroidetes refractory to 

cultivation in this environment. 

 

3.4.2 Bacterioneuston vs. Bacterioplankton 

 

Results obtained from both culture-dependent and culture-independent approaches 

revealed similar (although not identical) bacterial communities inhabiting the SML and 

UW in Ria de Aveiro. These results are in agreement with previous studies conducted in 

the Mediterranean Sea (Agogué et al., 2005a) and in the South Pacific Ocean 

(Obernosterer et al., 2008).  

On the other hand, marked differences between both communities were previously 

observed for other geographical locations (e.g. North Sea and the Blyth estuary) but only 

when SML samples were collected using polycarbonate membranes (Franklin et al., 2005; 

Cunliffe et al., 2008; Cunliffe et al., 2009a).  

The glass plate method here applied has been previously considered appropriate for 

sampling culturable and total bacteria from the SML and allegedly avoids biases imposed 

by selective adsorption properties of membranes (Agogué et al., 2004). 

However, recently, Cunliffe and coworkers (2009a) argued that samples collected 

using this method may contain subsurface water in addition to the surface microlayer. 

Taking this into consideration, divergence between Ria de Aveiro SML and UW 

communities may be higher than noticed during this study and the detected differences are 

probably more pronounced than suggested by our results.  
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In fact, some consistent differences were detected. Abundance of heterotrophic bacteria 

was normally higher in the SML as previously described for other aquatic systems 

(Sieburth et al., 1976; Hardy, 1982). CFU enrichment in the SML has properly been related 

to higher nutrient concentrations and also to transportation of living cells from underlying 

waters via electrostatic interactions with rising particles (Joux et al., 2006).  

In terms of composition, specific populations, detected as distinct DGGE band 

positions, were found and sequenced from the SML samples. Previous studies have also 

noticed structural differences (pronounced or minor) between SML and UW communities 

when using culture-independent fingerprinting techniques (Agogué et al., 2005a; Cunliffe 

et al., 2008).  

The fact that most of the SML-specific bands retrieved during this study shared low 

level similarity with previously reported sequences may suggest the existence of estuarine 

SML-specific populations. However this aspect certainly needs further detailed 

investigation.  

Regarding culturable heterotrophic bacteria, strong evidences suggesting the 

occurrence of unusual neustonic phylotypes absent from underlying waters were not 

gathered. In fact, the foremost difference detected was a higher abundance in UW of the 

Actinobacteria genera Agrococcus and Kocuria.  

Also the genus Vibrio was mostly retrieved from the UW samples. Our results are in 

disagreement with previously reported studies which described Actinobacteria as more 

abundant in the surface microlayer (Agogué et al., 2005a) and the genus Vibrio as 

dominant in the bacterioneuston (Franklin et al., 2005).  

As for other aspects, these contradictory results may be related to different sampling 

methodologies, geographical locations or even short-term spatial and temporal 

variabilities.  

Differences between bacterioneuston and bacterioplankton in Ria de Aveiro were 

previously reported in what concerns the effects of ultraviolet radiation on both 

communities (Santos et al., 2011a; Santos et al., 2011b). 
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3.4.3 Biofilm-forming bacteria 

 

The gelatinous nature of SML may promote the colonization by biofilm-forming 

bacteria (Cunliffe & Murrell, 2009). To our knowledge, this study presents the first attempt 

to detect differences between bacterioneuston and bacterioplankton focusing on bacteria 

known to form biofilms. For this we intentionally enriched our culture collection with 

members of Pseudomonas and Aeromonas and we also used a culture-independent assay 

specific for Aeromonas.  

Both genera are ubiquitous in aquatic environments and some species/strains are 

known to form biofilms in water (Doğruöz et al., 2009). Consistent differences between 

SML and UW aeromonads communities were not identified neither by the analysis of the 

culture collections nor by the analysis of DGGE fingerprints. 

 In fact, DGGE fingerprints from both layers shared low similarity but apparently the 

observed variability cannot be explained by any of the considered variables (layer, site or 

light regimen).  

In terms of Pseudomonas, an OTU (represented by isolate GCDN9-III in Table 3.1) 

was consistently overrepresented within SML samples (74% of the isolates). The ability of 

strains included in this OTU to form biofilms should be further investigated. Despite 

preliminary, our results suggest that differences confined to specific phylotypes could be 

relevant in distinguishing bacterioneuston and bacterioplankton. In accordance, additional 

efforts should be made to characterize the Pseudomonas communities in both layers. 

 

3.4.4 Differences determined by spatial and temporal factors 

 

The properties of SML may vary significantly along time and space (Peltzer et al., 

1992; Santos et al., 2009). Therefore we hypothesized that the degree of similarity between 

adjacent bacterioneuston and bacterioplankton would differ between sampling sites and 

dates. For that reason, we sampled three geographical locations in four sampling dates and 

we also included samples collected during day and night. Clear diel patterns were not 

identified.  

Even so, our results confirm that differences between both communities frequently 

vary according to spatial and temporal factors. In terms of culturable bacteria abundance, 
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differences were more pronounced in sampling site CN when compared with the other 

sampling locations.  

Also, major differences were detected between samples collected during the third 

campaign. Water samples were not characterized in terms of organic matter content but site 

CN is mainly impacted by urban effluents, aquacultures and run-off from agriculture fields 

(Monteiro et al., 2007). Thus, it is possible that higher organic loads at this site may 

account for the differences observed.  

In terms of composition, the strongest discrimination occurred between DGGE profiles 

derived from SML and UW samples collected from site CS and most of the SML-specific 

bands were retrieved from this site. The hydrocarbon contamination at this site (Coelho et 

al., 2010), which is expected to accumulate at the SML, may favor the establishment of 

unusual specific phylotypes.  

Also, the spatial distribution of genera accounting for the most pronounced differences 

between both communities (Agrococcus, Kocuria and Vibrio) was unequal. Agrococcus 

and Kocuria were most frequently retrieved from site CS (71% of the isolates included in 

these genera) and Vibrio was mainly found at site CC (67% of the isolates).  

Since temperature values were very stable between sites or sampling dates (Table 3.2) 

we can assume that this parameter was not a main driver of bacterioneuston and 

bacterioplankton compositional shifts. As for salinity, the higher values were observed in 

campaigns C3 and C4 (corresponding to a dry period). As previously described (Henriques 

et al., 2006a), this factor accounts for a considerable part of the variability in bacterial 

assemblages in the estuary but if it affects differently bacterioneuston and bacterioplankton 

remains to be clarified.  

Our results suggest that differences between bacterioneuston and bacterioplankton are 

probably irregular and depend on temporal and spatial factors. This topic has been poorly 

addressed in previous studies and certainly warrants future investigation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  Molecular analysis of the diversity of genus 

Psychrobacter present within a temperate estuary
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4.1 Introduction 

 

Cold-adapted bacteria are often described as endemic organisms of extremely cold 

regions and its occurrence surpassing these environments is presumably sporadic 

(Martiny et al., 2006). However, ‘Omics’ technologies have revealed that psychrophilic 

bacteria harbour adaptive traits that could promote their dispersion beyond low-

temperature locations (Methé et al., 2005; Cacace et al., 2010). For instance, the study 

of the transcriptome of the cold-adapted genus Psychrobacter revealed adaptations to 

significant temperature variations (Rodrigues et al., 2008; Bergholz et al., 2009). Even 

so, based on quantitative PCR and 16S rRNA gene libraries, Psychrobacter populations 

from extremely cold habitats were considerably more abundant and diverse than 

Psychrobacter populations retrieved from warmer regions (Rodrigues et al., 2009).  

Global warming is reducing the extent of cold habitats thus affecting the evolution 

of cold-adapted bacteria. The extreme biotechnological relevance of cold-adapted 

bacteria as well as their fundamental role in biogeochemical cycles (Feller & Gerday, 

2003) justifies the need to understand to what extent this bacteria can adapt to 

environmental warming. Studying the diversity of cold-adapted bacteria in temperate 

habitats will add knowledge on this topic. 

The genus Psychrobacter includes Gram-negative coccobacilli that are non-

pigmented, oxidase-positive, non-motile, psychrophilic or psychrotolerant, and 

halotolerant (Juni & Heym, 1986). At the time of writing, this genus included 34 species 

with validly published names. Most of the species described so far have been isolated 

from cold environments, including Arctic and Antarctic sea ice, water, soils and 

sediments (Bowman et al., 1996; Bowman et al., 1997; Yumoto et al., 2003; 

Romanenko et al., 2004; Shivaji et al., 2004; Bakermans et al., 2006). Less frequently 

new species have been isolated from temperate marine environments (Yoon et al., 

2005b; Yumoto et al., 2010;) and other sources such as pigeon feces, food products, 

lung tissue and human blood (Vela et al., 2003; Yoon et al., 2003; Yoon et al., 2005a; 

Yassin & Busse 2009; Wirth et al., 2012). 

Besides temperature, the occurrence of Psychrobacter was significantly associated 

with other environmental factors such as pH closer to neutrality, high salinity and 

higher concentrations of potassium and magnesium (Rodrigues et al., 2009). 

Anthropogenic-related factors may also influence the distribution of Psychrobacter. For 
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example, Psychrobacter enrichment has been noted in aquatic environments 

contaminated with hydrocarbons (Harwati et al., 2007; Prabagaran et al., 2007; Lo 

Giudice et al., 2010). 

During a previous study based on culture-dependent methods, the genus 

Psychrobacter was, unexpectedly, the most frequently retrieved from the sea-surface 

microlayer (SML) and the underlying water (UW) of a temperate estuary (Ria de 

Aveiro, Portugal) during a warm season (May to July) (Azevedo et al., 2012). SML 

refers to the thin (1-1000 µm) film that forms between the hydrosphere and atmosphere 

(Azevedo et al., 2012).  

To our knowledge, broad studies on the diversity of Psychrobacter within temperate 

aquatic environments have never been conducted. To provide a comprehensive picture 

of the diversity of Psychrobacter populations inhabiting SML and UW in Ria de Aveiro, 

culture-independent methods (e.g. DGGE and 16S rRNA clone libraries) specifically 

targeting this genus were applied. Also a collection of Psychrobacter isolates was 

analysed by molecular typing and 16S rDNA-based phylogenetic analysis.  

 

4.2 Material and methods 

 

4.2.1 Sampling  

 

Ria de Aveiro is a shallow estuary on the north-west coast of Portugal (40º38’N, 

8”45’W), about 45 km long and 8.5 km wide (Figure 5.1). This study was conducted 

during the warm season in 3 campaigns in May (C1), June (C2) and July (C3) and 

samples were retrieved from the SML and UW at three sites: Cais do Chegado (CC), 

Costa Nova (CN), and Cais do Sporting (CS). Water samples were retrieved as 

previously described (Azevedo et al., 2012). Briefly samples from SML were collected 

by adherence to glass and acrylic plates, and UW samples were collected by submerging 

a sterilized brown glass bottle and opening it at a depth of approximately 0.4 m. 

Samples were kept in cold and dark conditions during transport and were processed 

within 1 h after sampling. Salinity was determined with a WTW Conductivity Meter 

Model LF 196 (WTW, Weinheim, Germany) and measured using the Practical Salinity 

Scale. 
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4.2.2 Culture-dependent analysis of Psychrobacter populations 

 

4.2.2.1 Psychrobacter isolates  

 

Isolates were obtained as described by Azevedo and co-workers (2012). In 

summary, isolates were retrieved from Estuarine Agar (EA; Weiner et al., 1980) and 

GSP (Glutamate Starch Phenol Red Agar, Pseudomonas/Aeromonas selective agar) 

plates. DNA was purified as previously described (Azevedo et al., 2012). Eighty one 

isolates (42 from SML and 39 from UW samples) were affiliated to Psychrobacter by 

sequencing the 16S rRNA gene. The pure cultures were maintained on estuarine agar at 

4ºC (after growing at the same culture media during 2 days at 30ºC) and as 20% (v/v) 

glycerol suspensions at -80ºC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Map of Ria de Aveiro showing the location of the sampling sites Costa Nova 

(CN), Cais do Sporting (CS) and Cais do Chegado (CC). 
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4.2.2.2 REP-PCR genomic fingerprinting 

 

All isolates were typed by using a REP-PCR method with primers REP-1R and 

REP-2I as described previously (Versalovic et al., 1991). PCR reactions were carried 

out with Taq polymerase, nucleotides and buffers from Promega. The PCR reaction 

mixtures (25µl) contained 1X PCR buffer, 200 µM of each nucleotide, 3 mM MgCl2, 

5% dimethylsulfoxide, 7.5 pmol of each primer, 1U of Taq polymerase and 50–100 ng 

purified DNA. Amplification was carried out as follows: initial denaturation for 7 

minutes at 95ºC, followed by 30 cycles of denaturation for 1 min at 94ºC, annealing for 

1 min at 40ºC and extension for 8 min at 65°C and by a final extension of 16 min at 

65ºC. The products were electrophoresed for 90 min under a constant voltage of 80V on 

a 1.5% (w/v) agarose gel containing 0.5X TAE (20 mmol/L Tris–acetate, pH 7.4, 10 

mmol/L sodium acetate, 0.5 mmol/L Na2EDTA) and DNA markers purchased from 

MBI Fermentas (Vilnius, Lithuania). The gel images were acquired using a Molecular 

Imager FX system (Bio-Rad Laboratories, Hercules, CA USA) and analysed using the 

software package GelCompar 4.0 (Applied Maths, Sint-Martens-Latem, Belgium). 

 

4.2.3 Cultured-independent analysis 

 

4.2.3.1 DNA extraction and 16S rRNA gene amplification 

 

For DNA extraction 200 mL water samples from SML and UW were filtered 

through 0.2-µm-pore-size polycarbonate filters (GE Water & Process Technologies). 

DNA purification was performed using the Genomic DNA Extraction Kit (MBI 

Fermentas) as described previously (Henriques et al., 2004).  

Approximately 400bp of the 16S rRNA gene were amplified from water samples by 

using the Psychrobacter-specific primers 432-F/823-R and PCR conditions as described 

by Rodrigues et al. (2009).  These and subsequent PCR reactions were carried out in a 

Bio-Rad MyCycler Thermal Cycler (Bio-Rad ) using Taq polymerase, nucleotides and 

buffers purchased from MBI Fermentas. 
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4.2.3.2 Denaturing gradient gel electrophoresis (DGGE) 

 

Psychrobacter-specific molecular fingerprints of each sample were obtained using a 

DGGE approach. PCR was as described above except that the following program was 

used: initial denaturation (94ºC for 5 min); 30 cycles of denaturation (92ºC for 30 s), 

annealing (59ºC for 30 s), and extension (72ºC for 30 s); and a final extension (72ºC for 

30 min). Also, a GC clamp was attached to the 5’ end of the forward primer in order to 

prevent complete melting of the PCR products during subsequent DGGE analysis 

(Muyzer et al., 1993). 

PCR products were directly applied onto 8% polyacrylamide gels (37.5:1, 

acrylamide/bisacrylamide) in 0.5X TAE buffer (20 mmol/L Tris–acetate, pH 7.4, 10 

mmol/L sodium acetate, 0.5 mmol/L Na2EDTA) with urea and formamide as 

denaturants. Linear denaturing gradient ranged from 35 to 62.5%. Electrophoresis was 

performed on a D-Code Universal Mutation Detection System (Bio-Rad) at 60°C; 

initially a constant voltage of 20 V was applied for 15 min followed by 75 V during 16 

hours. After electrophoresis, the gels were stained for 5 min with ethidium bromide and 

then rinsed for 20 min in distilled water. Gel images were acquired using the Gel Doc™ 

XR+ System (Bio-Rad). 

DGGE profiles were analyzed using GelCompar II Software (Applied Maths). 

Cluster analysis of DGGE profiles was performed using the UPGMA method (group 

average method) applying Pearson correlation measure. 

 

4.2.3.3 16S rRNA gene libraries 

 

To construct Psychrobacter-specific 16S rRNA gene libraries, samples from the C3 

campaign (July) were chosen. PCR products from SML and UW samples were mixed 

separately. The SML and UW mixed products were cloned using the TA cloning Kit 

according to manufacturer instructions (Invitrogen Life Technologies, Inc., Carlsbad, 

CA, USA). Libraries will be subsequently designated Psysml (obtained from SML 

samples) and Psyuw (from UW samples).  

Inserts were amplified using vector-specific primers. PCR products with the 

expected size were purified with the Jetquick PCR Product Purification Spin Kit 
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(Genomed, Löhne, Germany). Sequencing reactions were carried out using the same 

primers by the company Stab-Vida (Oeiras, Portugal).  

 

4.2.4 Psychrobacter population analysis 

 

Taxonomic affiliation, alignment and clustering analysis were processed by using 

the pipeline available at Ribosomal Database Project (RDP-II) website 

(http://rdp.cme.msu.edu). OTUs (Operational Taxonomic OTUs) were defined based on 

a 99% cut-off value. 

Classical indices to estimate richness (Chao’s richness estimator) and diversity 

(Shannon index) were obtained from RDP-II pipeline for both clone libraries and also 

for the Psychrobacter culture collection. Distance matrixes were constructed and ∫-

LIBSHUFF analysis was performed through MOTHUR (Schloss et al., 2009). The 

genetic variation within and among samples was estimated with an analysis of 

molecular variance (AMOVA) by using the program Arlequin version 3.1 (Excoffier et 

al., 2005). 

One representative of each defined OTU was chosen to construct the phylogenetic 

tree within the MEGA 5.0 (Tamura et al., 2011) using the kimura-2 parameter and 

Neighbor-joining clustering method. 

 

4.2.5 Nucleotide sequence accession numbers 

 

Sequences were deposited in GenBank under the following accession numbers: 

JX897791 to JX897817 (for 16S rRNA gene clones) and JX897818 to JX897897 and 

JQ072080 (for Psychrobacter isolates).  

 

4.3 Results and Discussion 

4.3.1 Occurrence and characterization of Psychrobacter isolates from Ria 

de Aveiro  

 

Psychrobacter isolates represented almost 25% of a culture collection of 

heterotrophic bacteria previously obtained from Ria de Aveiro (Azevedo et al., 2012). In 

the present study, these isolates (n=81) were categorized into 9 OTUs based on an 

identity criteria of 99% at the 16S rRNA gene sequence (Table 4.1). Almost 83% of the 
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isolates were included in the three dominant OTUs. All isolates were successfully typed 

by REP-PCR and 51 distinct profiles were obtained. Both the total number of OTUs and 

the number of REP profiles suggest the presence of a diverse population of 

Psychrobacter in the estuary. According to Bowman et al. (1997) and Vishnivetskaya et 

al. (2000) NaCl concentrations up to 1.0 M in the culture media and incubation at low 

temperatures can strongly select for Psychrobacter strains. However the abundance 

suggested by our results cannot be explained by culture conditions, since the ones 

applied during this study were not designed to enrich for Psychrobacter: samples were 

spread onto GSP and Estuarine Agar, which contain lower concentrations of NaCl, and 

plates were incubated at 22ºC.  

The Psychrobacter isolates were retrieved from both water layers and the three 

sampling sites in all campaigns (Table 4.1).  

Approximately the same number of isolates was retrieved from both layers.  

However, Shannon index values suggested higher diversity among the Psychrobacter 

population inhabiting SML (Table 4.1). SML communities are known to be subjected to 

a wider range of selective pressures than communities inhabiting UW. These pressures 

may be imposed by the presence of several contaminants, higher levels of UV radiation 

or higher temperature and salinity fluctuations (Maki, 1993; Cincinelli et al., 2005; 

Cuong et al., 2008; Azevedo et al., 2012): The persistence of culturable Psychrobacter 

phylotypes adapted to those pressures may account for the differences between water 

layers in terms of diversity. For example, hydrocarbons are known to be enriched in 

SML (Wurl & Obbard, 2004) and were reported to strongly impact the Psychrobacter 

communities (Lo Giudice et al., 2010).  

   Table 4.1 Diversity of Psychrobacter isolates retrieved from Ria de Aveiro. 

Distribution by site 
Distribution by water 

layer OTU 
Nº isolates (nº REP 

types) 
CC CN CS SML UW 

OTU1 17 (17) 2 1 14 10 7 
OTU2 39 (20) 11 7 21 17 22 
OTU3 11 (2) 1 4 6 9 2 
OTU4 3 (3) 1 1 1 2 1 
OTU5 5 (4) 0 1 4 1 4 
OTU7 2 (2) 0 0 2 0 2 
OTU9 2 (2) 0 0 2 2 0 
OTU26 1 (1) 0 0 1 1 0 
OTU27 1 (1) 1 0 0 1 0 

Total 16 16 49 42 39 
Shannon Index 1.04 1.49 1.47 1.54 1.36 
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Even so we are aware that this is an inference of the diversity based on the 

cultivable fraction and extrapolations to the community must be considered carefully. 

About 60% of the Psychrobacter isolates were retrieved from sampling site CS 

(Table 4.1). This may also be related to higher contamination with hydrocarbons in this 

site (Coelho et al., 2010), reported to select for Psychrobacter spp. In fact, Prabagaran 

et al. (2007) showed that Psychrobacter representatives were strongly enriched due to 

addition of crude oil to seawater collected from off Ushuaia (Argentina), being 

undetectable through classic PCR approaches in the original samples. Also, 

Psychrobacter strains have emerged as hydrocarbon-degrading bacteria during studies 

conducted at Antarctic, Arctic and Indonesian seawaters (Gerdes et al., 2005; Harwati et 

al., 2007; Lo Giudice et al., 2010). The abundance of Psychrobacter in site CS may also 

be related to higher salinity values preferred by members of this genus (Romanenko et 

al., 2004; Ponder et al., 2005). Finally the CS site is located near a harbour that receives 

cod fishing boats coming from the North Sea, bringing salt-cured codfish. As previously 

reported, Psychrobacter was the dominant genus present in the cod skin mucus and 

survived to prolonged frozen storage and concentrations of NaCl of up to 25% (w/v) 

(Bjørkevoll et al., 2003). Thus we can speculate that runoff from cod-fishing boats can 

also contribute to the diversity and abundance of Psychrobacter in the CS site.  

 

4.3.2 Dynamics of Psychrobacter populations 

 

We developed and optimized a DGGE-based method to assess the structure and 

dynamics of Psychrobacter populations. The analysis included SML and UW samples 

from three sampling sites and three sampling periods (May to July).  

DGGE fingerprints were obtained from all samples (Figure 4.2) and the method was 

highly reproducible (data not shown). In general profiles shared a high degree of 

similarity and the number of bands per profile was rather stable ranging from 10 to 13 

bands. Clustering analysis grouped the obtained profiles preferentially according to 

sampling dates and sites rather than water layers (Figure 4.2). In fact, differences 

between SML and UW profiles were detected particularly in terms of the intensity of 

some bands (Figure 4.2). 
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Figure 4.2 a) DGGE analysis of Psychrobacter populations in UW and SML samples collected in May 

■, June ▲ and July ●. b) Dendrograms of DGGE patterns created using UPGMA method (group average 

method) applying Pearson correlation analysis. 

 

DGGE results indicate that Psychrobacter populations were rather stable in the 

estuary suggesting the presence of several well-adapted phylotypes withstanding 

temporal and spatial environmental fluctuations. 

 

4.3.3 Diversity of Psychrobacter populations 

 

The diversity of the Psychrobacter community was further characterized by 

generating genus-specific 16S rDNA libraries from samples collected in July. To assess 

differences between water layers, amplicons obtained from SML and UW samples were 

cloned separately.  

A total of 106 clones were randomly picked and sequenced (51 from library Psysml 

and 55 from library Psyuw). All sequences affiliated with Psychrobacter members 
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confirming the specificity of the primers. Sequences were classified into 33 OTUs (at 

least 99% sequence similarity) (Figure 4.3). The number of sequences per OTU varied 

from only 1 to 25. Four OTUs included 47% of the total number of sequences. OTUs 

represented by only 1 sequence accounted for 45% of the total number of OTUs.  

 

Figure 4.3 Relative abundance of the observed OTUs among Psysml and Psyuw clone libraries. 

 

Sequences from the SML library were categorized in 18 OTUs and sequences from 

the UW library were distributed in 22 OTUs (Table 4.2). Only seven OTUs included 

sequences from both layers. Diversity and estimated richness were higher for the UW 

library. Also ∫-LIBSHUFF analysis indicate that Psychrobacter populations from SML 

and UW were significantly (p<0.05) different (Table 4.2). An AMOVA test was 

conducted to evaluate the variance in genetic diversity between Psychrobacter 

communities from SML and UW (Excoffier et al., 2005). According to the AMOVA 

results the Psychrobacter phylogenetic variance between layers was low (FST=7.22%) 

but significant (p<0.001). Genetic variation among populations probably results from 

different selective pressures occurring in SML and UW (Cunliffe et al., 2011). As 

previously referred SML is a place of accumulation of organic matter and of a variety of 

pollutants including hydrocarbons and heavy metals (Cincinelli et al., 2005; Cuong et 

al., 2008). Also stronger salinity and temperature variations are known to occur at this 

layer (Maki, 1993). Those factors may be determinant in selecting for different 

Psychrobacter phylotypes.  
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    Table 4.2 Analysis of Psychrobacter-specific 16S rRNA gene libraries. 

 
 Clone library 
  

Psysml Psyuw  
Number of sequences 51 55  
Number of OTUs 18 22  
Shannon Index (H) 2.43 2.77  
Chao1 estimator 27 30  
% of coverage 66.7 70  
    

Psysml:Psyuw Psyuw:Psysml  
0.0018 <0.0001  ∫-LIBSHUFF (P-value)

* 

  
     * P-value <0.05 

 

Differences between SML and UW bacterial communities have been addressed in 

several aquatic systems including Ria de Aveiro (Azevedo et al., 2012). Although some 

controversy remains, different communities are presumed to occur in each layer 

(Cunliffe et al., 2011). However which phylogenetic groups contribute to those 

differences is mainly unknown. This study adds to the existent information by assessing 

differences at an intra-genus level. 

 

4.3.4 Phylogenetic analysis of Psychrobacter isolates and clones 

 

Phylogenetic analysis was done based on the partial 16S rRNA gene sequences (≈ 

400bp) representing each OTU and the type strains of all Psychrobacter species 

described so far. Most sequences retrieved during this study fall into a large cluster that 

also included 13 Psychrobacter species mainly retrieved from marine or estuarine 

waters. Psychrobacter species from Arctic and Antarctic sediments as well as from 

fermented seafood, infected lung tissue, feces and human blood grouped in separate 

clusters.  

According to the phylogenetic analysis a high diversity of Psychrobacter phylotypes 

were retrieved from Ria de Aveiro (Figure 4.4). These results suggest the existence of 

phylotypes adapted to temperate estuarine or marine aquatic environments. Salinity and 

contamination with hydrocarbons may play a role in the selection of these phylotypes 

(Bowman et al., 1997; Lo Giudice et al., 2010). Layer-specific clusters were not 

identified within the tree. 
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Figure 4.4 Phylogenetic tree based on 16S rRNA gene sequences of Psychrobacter strains (Psycult,♦) 

and clone libraries from SML (Psysml) and UW (Psyuw). One representative sequence of 

each Psycult, Psysml and Psyuw OTU was included. The phylogenetic tree was obtained by 

using the neighbor-joining method and rooted using 16S rRNA gene sequences from two 

Acinetobacter species. Bootstrap values higher than 50% are shown in nodes. 
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4.3.5 Final considerations 

 

We conducted an in depth analysis of the structure and dynamics of the 

Psychrobacter populations in Ria de Aveiro by combining culture-dependent and 

culture-independent approaches. A new developed Psychrobacter-specific DGGE-based 

method was particularly helpful for the simultaneous analysis of a large number of 

samples allowing the clear identification of compositional shifts in the communities’ 

structure. However, since DGGE only assesses the most dominant members of the 

community (Muyzer et al., 1993), clear differences between SML and UW communities 

were only observed through the analysis of 16S rDNA libraries, which provided a 

detailed picture of the phylogenetic composition of the Psychrobacter populations.  

As often described by other authors (Kisand & Wikner, 2003; Brightwell et al., 

2009) culture-dependent and culture-independent approaches did not provide 

overlapping results. A higher diversity was assessed using culture-independent methods 

and groups characterized by culturing were underrepresented when using culture-

independent methods. Thus, the combination of the approaches here applied allowed 

obtaining a more comprehensive picture of Psychrobacter communities.  

Our overall results revealed the presence in Ria de Aveiro of populations of 

Psychrobacter that are composed by a large diversity of members suggesting that this 

genus is well-adapted to this environment. Also, different Psychrobacter populations 

were found in the SML and UW. Observed diversity trends may be related with 

environmental factors such as salinity and/or anthropogenic pressures such as the 

presence of hydrocarbons. 
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5. Analysis of antibiotic resistance in bacteria isolated 

from the surface microlayer and underlying water of 

an estuarine environment 
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5.1 Introduction 

 

A large fraction of the Earth’s surface is covered by water. The interface between 

hydrosphere and atmosphere is represented by a thin gelatinous surface film designated 

as sea-surface microlayer (SML), where many ecological processes take place (Liss & 

Duce, 1997). 

The SML is distinct from underlying waters (UW) (Liss & Duce, 1997), since higher 

fluctuations in salinity and temperature occur and the exposure to ultra-violet radiation 

is also greater than in UW. Also, in the SML higher amounts of organic compounds 

(proteins, lipids and polysaccharides) and anthropogenic contaminants (hydrocarbons, 

metalloids, pesticides and antibiotic residues) accumulate (Cincinelli et al., 2005; Cuong 

et al., 2008; Cunliffe & Murrell, 2009). Moreover, even under greater selective 

pressures, the SML harbours a more abundant and active bacterial community, the 

bacterioneuston, comparing to underlying waters (Azevedo et al., 2012; Hardy, 1982; 

Sieburth et al., 1976). 

The gelatinous nature of the SML combined with strong selective pressures and high 

bacterial densities stimulate the production of secondary metabolites (Maki, 2002). In 

fact, for example antibiotic producers have been frequently retrieved from the SML 

(Hakvåg et al., 2008).  

The production of antimicrobials together with persistence of anthropogenic-derived 

antibiotic residues in the SML (Walczak & Donderski, 2004) may select for and foment 

the dissemination of antibiotic resistance genes (ARGs). In addition bacterial growth in 

biofilms, expected to occur in the SML, might also promote horizontal gene transfer and 

resistance to antimicrobial agents (Hermansson et al., 1987; Cunliffe & Murrell 2009; 

Oliveira et al., 2012). Thus, the SML may be a natural reservoir of antibiotic resistance 

genes and an incubator of new gene combinations. 

However, most studies concerning antibiotic bacterial resistance in estuarine and 

coastal water systems focused on bulk water (Henriques et al., 2006c; Kümmerer, 2009; 

Figueira et al., 2011), and consequently the relevance of the SML in developing, 

selecting and spreading ARGs has been almost ignored.  

Estuarine systems are strongly influenced by anthropogenic activities accumulating 

high levels of pollutants and often becoming eutrophicated (Keddy, 2000), and thus 

gathering ideal conditions for the establishment of a distinct bacterioneuston 

community.  
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In a previous study, we have focused our attention on the phylogenetic composition 

of the bacterioneuston and bacterioplankton communities from a highly polluted 

estuarine system (Ria de Aveiro, Portugal) (Azevedo et al., 2012). The aims of the 

present study are: 1) to compare the prevalence of cultivable antibiotic-resistant bacteria 

in the SML and UW in Ria de Aveiro; 2) to compare antibiotic resistance profiles 

between isolates previously obtained from SML and UW samples; 3) to assess and 

compare the occurrence and diversity of antibiotic resistance genes and integrons in the 

same isolates. 

 

5.2 Material and methods 

 

5.2.1 Heterotrophic plate counts on antibiotic-selective media 

 

SML and UW samples were collected in three occasions (C1, C2 and C3) in 2008 at 

three sites named Cais do Chegado (CC), Costa Nova (CN), and Cais do Sporting (CS) 

within the estuary Ria de Aveiro as described by Azevedo and co-workers (2012). 

Briefly, SML samples (250 mL) represented by a water layer of 60-100 µm were 

collected with an acrylic or a glass plate (Azevedo et al., 2012). Underlying waters (1 L) 

were collected at approximately 0.4 m depth in 2 L autoclaved bottles. 

From each water sample 100µl were directly spread onto EA and GSP plates 

without added antibiotics. Also 1 mL of each sample was serially diluted in 0.9% NaCl 

and 100µl of each dilution was spread in the same media to obtain colony counts 

between 30 and 300 per plate. Total heterotrophic plate counts (HPC) were determined 

using these plates. 

Resistant bacteria were cultivated by the same spreading procedure in the same 

culture media supplemented with ampicillin (50µg/µl), tetracycline (20 µg/µl) and 

streptomycin (10 µg/µl). These concentrations are above the breakpoints defined by the 

Clinical and Laboratory Standards Institute (CLSI, 2005) for most phylogenetic groups 

and were chosen to select for highly resistant bacteria. Colony-forming units (CFU/ml) 

were counted in triplicate (three independent plates) after 4 days of incubation at 22ºC 

in the dark.  
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5.2.2 Bacterial strains 

 

A total of 352 bacterial isolates were obtained from SML and UW within the estuary 

Ria de Aveiro in a previous work, corresponding to approximately 10 isolates selected 

from each sample (Azevedo et al., 2012). From those, 12 isolates were impossible to 

recover in successive cultures and were excluded from the current study. Isolates were 

typed using REP-PCR with primers REP-1R and REP-2I as described previously 

(Versalovic et al., 1991). PCR reactions were carried out with Taq polymerase, 

nucleotides and buffers from Promega (Madison, WI). The PCR reaction mixtures 

(25µl) contained 1X PCR buffer, 200 µM of each nucleotide, 3 mM MgCl2, 5% 

dimethylsulfoxide, 7.5 pmol of each primer, 1U of Taq polymerase and 50–100 ng 

purified DNA. Amplification was carried out as follows: initial denaturation for 7 

minutes at 95ºC, followed by 30 cycles of denaturation for 1 min at 94ºC, annealing for 

1 min at 40ºC and extension for 8 min at 65°C and by a final extension of 16 min at 

65ºC. The products were electrophoresed for 90 min under a constant voltage of 80V on 

a 1.5% (w/v) agarose gel containing 0.5X TAE (20 mmol/L Tris–acetate, pH 7.4, 10 

mmol/L sodium acetate, 0.5 mmol/L Na2EDTA) and DNA markers purchased from 

MBI Fermentas (Vilnius, Lithuania). The gel images were acquired using a Molecular 

Imager FX system (Bio-Rad Laboratories, Hercules, CA, USA) and analysed using the 

software package GelCompar 4.0 (Applied Maths, Sint-Martens-Latem, Belgium). 

From 340 isolates, a total of 171 isolates displaying different profiles were identified 

based on the partial sequence of the 16S rRNA gene (Azevedo et al., 2012). Isolates (80 

isolates from SML and 91 from UW) affiliated with 34 genera within 6 classes (Table 

5.1) and were included in the present study.  

 

5.2.3 DNA extraction 

 

Isolates were cultured in Luria-Bertani agar plates (Merck, Germany) and were 

incubated at 30ºC overnight. The total DNA was obtained by ressuspending 2 isolated 

colonies in 100 µl of buffer B1 (50 mM Tris-Cl pH 8.0; 50 mM EDTA pH 8.0; 0.5% 

Tween 20; 0.5% Triton X-100) and 100µl of master-mix (1 ml of buffer B1; 2 mg/ml of 

Lysozyme; 4.5 mg/ml of Proteinase K: 7.5 U of RNAse A). Cell suspension was mixed 

vigorously and incubated for 30 minutes at 37ºC. Following, 70 µl of B2 (3 M 



Analysis of antibiotic resistance comparing two water layers

 
 

79 

Guanidine Hydrochloride; 20% Tween 20) were added and the mixture was incubated 

for 30 minutes at 50ºC. Subsequently the DNA Extraction Kit (#K0513 – MBI, 

Fermentas, Vilnius, Lithuania) was used according to the manufacturer instructions. 

 

5.2.4 Antimicrobial susceptibility testing 

 

Antimicrobial susceptibility was tested by the agar disk diffusion method as 

recommended by the CLSI. Isolates representing different REP profiles (n=171) were 

tested for susceptibility to 9 antimicrobial agents representing six classes of antibiotics: 

(1) β-lactams - ampicillin (10µg), imipenem (10µg), cephalothin (30µg); (2) 

aminoglycoside - streptomycin (10µg), gentamicin (10µg); (3) phenicols - 

chloramphenicol (30µg); (4) tetracyclines - tetracycline (30µg); (5) –the combination 

sulfamethoxazole/trimethoprim (25µg) and (6) quinolones - nalidixic acid (30µg). Disks 

were purchased from Oxoid (Hampshire, United Kingdom). Antimicrobial activities 

were determined as clear zones of inhibition around the antibiotic disks, after incubation 

at 30ºC for 24 h. Isolates were classified as sensitive, intermediate or resistant taking 

into account the CLSI guidelines (CLSI, 2005). Whenever genus-specific guidelines 

were not available guidelines for the Enterobacteriaceae were used for Gram-negative 

strains and guidelines for Staphylococcus spp. were used for Gram-positive strains. 

Escherichia coli ATCC 25922 was used as a quality control strain.  

 

5.2.5 Antimicrobial resistance genes 

 

All isolates were tested by PCR for the presence of genes conferring resistance to 

beta-lactams, tetracyclines, chloramphenicol, aminoglycoside, and sulphonamides by 

using primers and PCR conditions previously reported (Henriques et al., 2006c, 2008) 

(see also Table 5.2). Isolates carrying resistance genes were included in each PCR run 

as positive controls. The positive controls for amplification of the sulphonamide 

resistance genes sul1, sul2 and sul3 were as described previously (Henriques et al., 

2006c; Correia et al., 2003). A PCR mixture with no DNA added was used as a negative 

control. Gel electrophoresis was performed on 1.5% agarose gel and stained with 

ethidium bromide.  
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Table 5.1 Summary of bacteria isolated from SML and UW samples.  

 Phylogenetic group Number of isolates 

 Class Genera SML UW 

Agrococcus 0 6 
Arthrobacter 1 1 
Brevibacterium 0 1 
Corynebacterium 1 0 
Kocuria 0 2 
Microbacterium 0 1 
Micrococcus 1 0 

Actinobacteria 

Unclassified Micrococcaceae 2 5 
Aerococcus 1 0 
Bacillus 3 1 
Exiguobacterium 0 1 
Planococcus 2 0 

G
ra

m
-p

os
it

iv
e 

Bacilli 

Staphylococcus 1 0 
Brevundimonas 0 3 
Erythrobacter 1 1 
Agrobacterium  1 0 

Alfaproteobacteria 

Pseudorhodobacter 2 2 
Alcaligenes 2 1 
Comamonas 1 0 Betaproteobacteria 
Delftia 0 1 
Aeromonas 10 7 
Shewanella 6 8 
Pseudoalteromonas 0 1 
Rheinheimera 2 4 
Erwinia  2 0 
Halomonas 2 0 
Marinomonas 1 2 
Acinetobacter 5 8 
Pseudomonas 10 7 
Psychrobacter 15 13 
Vibrio 1 7 
Lysobacter 0 1 
Stenotrophomonas 2 1 

G
ra

m
-n

eg
at

iv
e 

Gamaproteobacteria 

Unclassified Enterobacteriaceae 5 6 

 

 

5.2.6 Detection and characterization of integrons 

 

The presence of IntI1, IntI2 and IntI3 genes, encoding class 1, 2 and 3 integrases, 

was investigated by PCR as previously described and using the same positive controls 

(Moura et al., 2007) (see Table 5.2). All integrase-positive isolates were examined to 

determine the sizes of integrons variable regions. Primer set 5‘CS/3‘CS was used to 

amplify the class 1 integron gene cassette region according to what has been described 

elsewhere (Moura et al., 2007) (see Table 5.2). PCR products were purified with the 

Jetquick PCR Product Purification Spin Kit (Genomed, Löhne, Germany) and used as 
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template in the sequencing reaction carried out by the company GATC (Germany). 

When bands with different sizes were amplified, PCR products were cloned using a TA 

cloning kit (Invitrogen, California, USA) according to the manufacturer’s instructions. 

Clones representative of different amplicons were sent for sequencing. Online similarity 

searches were performed using the BLAST software (Altschul et al., 1997). 

 

5.2.7 Statistical analysis 

 

Data retrieved from heterotrophic plate counts on antibiotic-selective media were 

analysed using t-test through PAST version 2.04 

(http://palaeoelectronica.org/2001_2001/past/issue2001_2001.htm.) (Hammer et al., 

2001). 

 

5.2.8 Nucleotide sequence accession numbers 

 

The nucleotide sequences were deposited in the GenBank nucleotide database under 

the following accession numbers: JX646699 to JX646702. 

 

5.3 Results 

 

5.3.1 Prevalence of antibiotic-resistant bacteria 

 

The percentages of ampicillin-, streptomycin- and tetracycline-resistant cultivable 

bacteria found in the two water layers are shown in Table 5.3. In general, resistance to 

streptomycin was the most prevalent (5.86% to 42.87% of total HPC), followed by 

ampicillin (2.29% to 12.37%) and tetracycline (0.87% to 7.21%). Levels of resistance 

were significantly higher for the SML samples (p-value < 0.05) with only a few 

exceptions (resistance to tetracycline in the C2 and C3 campaigns). The prevalence of 

ampicillin-resistant bacteria in the SML was 3 to 4 times higher than in UW and 

streptomycin-resistant bacteria were 2 to 3 times more prevalent in the SML. For 

tetracycline, significant differences were only detected in the first campaign (5 times 

more prevalent in the SML). 
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Table 5.2 Primers and PCR conditions  
Primer 

pair 

Target Sequence (5’ – 3’) Anealing  

temperature (ºC) 

Amplicon  

size (bp) 

Control strain Reference 

TEM_F AAAGATGCTGAAGATCA 
TEM_R 

blaTEM 
TTTGGTATGGCTTCATTC 

44 425 Klebsiella pneumoniae 6T a 

SHV_F GCGAAAGCCAGCTGTCGGGC 
SHV_R 

blaSHV 
GATTGGCGGCGCTGTTATCGC 

62 304 K. pneumoniae 2s a 

OXA-B_F CAAGCCAAAGGCACGATAGTTG 
OXA-B_R 

blaOXA-B 
CTCAACCCATCCTACCCACC 

56 561 Aeromonas sp. G.N1.15 a 

IMPF GAATAGAGTGGATTAATTCTC 
IMPR 

blaIMP 
GGTTTAAYAAAACAACCACC 

55 232 K. pneumoniae KP99c196 a 

a Henriques et al., 2006b 

TetAF GCTACATCCTGCTTGCCTTC 
TetAR 

tetA 
GCATAGATCGCCGTGAAGAG 

53 211 Escherichia coli M.I10.34 b 

TetBF TCATTGCCGATACCACCTCAG 
TetBR 

tetB 
CCAACCATCATGCTATTCCATCC 

53 391 E. coli M.N1.616 b 

TetEF ATGAACCGCACTGTGATGATG 
TetER 

tetE 
ACCGACCATTACGCCATCC 

53 744 Aeromonas sp. G.I10.2 b 

TetMF GTGGACAAAGGTACAACGAG 
TetMR 

tetM 
CGGTAAAGTTCGTCACACAC 

55 406 E. coli M.I10.34 b 

b Henriques et al., 2008 

aadA1_F TATCAGAGGTAGTTGGCGTCAT 
aadA1_R 

aadA1 
AATGAAACCTTAACGCTATGGAAC 

54 485 Aeromonas sp. G.N1.15 a 

catF CCTGCCACTCATCGCAGT 
catR 

cat 
CCACCGTTGATATATCCC 

55 623 Aeromonas sp. G.N1.15 a 

sulF1 CTGAACGATATCCAAGGATTYCC 
sulR1 

sul1 
AAAAATCCCATCCCCGGRTC 

50 239 Escherichia coli M.I10.40 a 

sul2-F GCGCTCAAGGCAGATGGCATT 
sul2-R 

sul2 
GCGTTTGATACCGGCACCCGT 

69 293 Escherichia coli M.I10.40 a 

a Henriques et al., 2006b 

sul3F AAGAAGCCCATACCCGGRTC 
sul3R 

sul3 
ATTAATGATATTCAAGGTTTYCC 

50 236 K. pneumoniae (intI3+) c 

intI1F CCTCCCGCACGATGATC 
intI1R 

Class 1 integrase 

gene TCCACGCATCGTCAGGC 
55 280 

Salmonella enterica ser 
Typhimurium (intI1+) c 

intI2F TTATTGCTGGGATTAGGC 
intI2R 

Class 2 integrase 

gene ACGGCTACCCTCTGTTATC 
52 233 E. coli (intI2+) c 

intI3F AGTGGGTGGCGAATGAGTG 
intI3R 

Class 3 integrase 

gene TGTTCTTGTATCGGCAGGTG 
50 600 K. pneumoniae (intI3+) c 

c Moura et al., 2007 

5’-CS GGCATCCAAGCAGCAAG 
3’-CS 

class 1 integron 

variable region AAGCAGACTTGACCTGA 
58.5 variable Aeromonas sp. G.N1.15 a a Henriques et al., 2006b 
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        Table 5.3 Prevalence of Antibiotic-resistant bacteria in SML and UW 

Total of HPCa  % of HPC resistant to: 
Campaign Sample 

(CFU/ml) Streptomycin Tetracycline Ampicillin 

SML 2.9 x 104 34.40 ± 2.24 7.21 ± 0.33 12.37 ± 1.23 
C1 

UW 6.2 x 103 21.33 ± 1.37 1.49 ± 0.25  3.20 ± 0.74 

SML 1.3 x 104 17.60 ± 2.11 0.87 ± 0.60 10.11 ± 1.04 
C2 

UW 1.8 x 104 5.86 ± 2.66 0.99 ± 1.90 3.99 ± 1.82 

SML 3.6 x 104 42.87 ± 6.67 0.91 ± 0.33 7.73 ± 0.45 
C3 

UW 1.9 x 104 12.53 ± 0.71 1.17 ± 1.01 2.29 ± 0.60 
            aHeterotrophic plate count 

 

5.3.2 Antibiotic susceptibility testing 

 

Susceptibility to all tested antibiotics was observed in 36% (61 out of 171) of the 

isolates. Predominant resistances were observed to cephalothin (46% of the isolates 

were resistant to this antibiotic), followed by ampicillin (40%) and streptomycin (34%). 

Isolates were most frequently susceptible to imipenem (only 6% of the isolates were 

resistant to this antibiotic), tetracycline (4%) and gentamicin (3%). Significant 

differences between isolates collected from SML and UW were not observed (Figure 

5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Percentages of strains obtained from the SML and UW that were resistant to each of the 

antibiotic tested. Antibiotic abbreviations: AMP, ampicillin; IMP, imipenem; TE, 

tetracycline; CN, gentamicin; NA, nalidixic acid; SXT, sulfamethoxazole/trimethoprim; C, 

chloramphenicol; S, streptomycin; KF, cephalothin. 
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Since antibiotic resistance profiles may be dependent on the phylogenetic groups, 

results were separately analysed for the most commonly retrieved genera (Aeromonas, 

Acinetobacter, Pseudomonas, Psychrobacter and Shewanella) as well as for the isolates 

classified as Enterobacteriaceae (Table 5.4). Most groups were highly resistant 

(resistance rates > 30%) to ampicillin, cephalothin and streptomycin. Lower levels of 

resistance to these antibiotics were only registered for Acinetobacter against 

streptomycin and for Shewanella against ampicillin. Additionally Psychrobacter 

members were exceptionally sensitive (resistance rates < 18%) to all antibiotics tested. 

All groups were highly susceptible (resistance rates < 18%) to imipenem, gentamicin 

and tetracycline. Resistance levels to chloramphenicol, nalidixic acid and 

trimethoprim/sulfamethoxazole were generally low with a few exceptions: 

Acinetobacter and Pseudomonas were highly resistant to 

trimethoprim/sulfamethoxazole and Pseudomonas members were also highly resistant 

to chloramphenicol and nalidixic acid. 

The overall frequency of multiresistant isolates (resistant to 3 or more classes of 

antibiotics) was 14% (24 isolates out of a total of 171 isolates). In terms of 

multiresistance, results obtained for SML and UW isolates were also similar (Figure 

5.2). For multiresistant isolates, 16 antibiotic resistance patterns were observed (Table 

5.5). The most common resistance profile included resistance to ampicillin, nalidixic 

acid, streptomycin, cephalothin, chloramphenicol and trimethoprim sulfamethoxazole (2 

isolates from SML and 2 from UW). The comparison between phylogenetic groups 

revealed that multiresistance was more frequent among Pseudomonas strains (Table 

5.4). 



Analysis of antibiotic resistance comparing two water layers

 
 

85 

 

 

 

 

 

Table 5.4 Antibiotic resistance rates of the most frequently retrieved genera and Enterobacteriaceae. 
 

 Resistance to Antibiotics (%) 

Phylogenetic group Ampicillin Cephalothin Imipenem Tetracycline Chloramphenicol Gentamicin 
Nalidixic 

acid 
Streptomycin 

Trimethoprim / 
sulfamethoxazole 

MDRa 

Acinetobacter 
(n=13) 

53.8 92.3 7.7 7.7 15.4 0.0 15.4 7.7 38.5 15.4 

Aeromonas (n=17) 100 82.2 5.9 17.6 0.0 0.0 17.5 88.2 0.0 23.5 
Enterobacteriaceae 

(n=13) 
46.2 30.8 0.0 7.7 7.7 0.0 7.7 30.8 7.7 15.4 

Pseudomonas 
(n=17) 

82.4 88.2 0.0 5.9 47.1 0.0 47.1 41.2 47.1 52.9 

Psychrobacter 

(n=28) 
3.6 3.6 7.1 0.0 0.0 0.0 10.7 17.9 0.0 0.0 

Shewanella (n=14) 21.4 100 7.1 0 0.0 7.1 14.3 42.9 7.1 14.3 
 



Analysis of antibiotic resistance comparing two water layers 

 
 

86 

 

5.3.3 Screening for antibiotic resistance and integrase genes 

 

The presence of genes conferring resistance to β-lactams, tetracyclines, 

chloramphenicol, aminoglycoside, and sulphonamides was analysed by PCR in all the 171 

isolates (Table 5.2). Genes blaTEM, blaOXA-B, blaSHV, blaIMP, tet(A), tet(B), tet(E), tet(M), 

cat, sul1, sul2, sul3 and aadA were chosen as they have been the most frequently detected 

acquired genes both in clinical and environmental isolates. Surprisingly, despite the 

considerable high levels of resistance against β-lactams and aminoglycosides, genes 

conferring resistance to these antibiotics were not detected. Genes conferring resistance to 

chloramphenicol were also not found. Among 7 isolates displaying resistance to 

tetracycline, tet(E) was detected in two isolates belonging to genus Aeromonas and tet(M) 

was detected in one Pseudomonas isolate.The gene sul1 was amplified from 3 isolates 

belonging to genus Aeromonas and sul2 was detected in one Pseudomonas isolate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The percentage of multiple antibiotic-resistant bacteria from the SML 

(bacterioneuston) and UW (bacterioplankton). 

 

The intI1 gene was present in 2.11% of the isolates, all affiliated with Aeromonas, 

while genes intI2 and intI3 were not detected in any isolate. The variable region of class 1 

integrons was successfully amplified with the primers 5‘CS/3‘CS. Sequencing analysis 
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revealed 4 different arrays: aadA1, aadA13, catB8 and catB8-aadA1. The last two arrays 

were amplified from the same isolate. 

 

       Table 5.5 Antibiotic resistance patterns of SML and UW isolates 
Nº of multi-resistant isolates 

(n=24) Antibiotic resistance patterns 

SML UW 

AMP, TE, Cb 0 1 
AMP, NA, Sa 2 1 
TE, C, KFb 0 1 
NA, S, KFb 0 1 
AMP, NA, SXT, Sb 0 1 
AMP, NA, SXT, KFc 1 0 
AMP, NA, S, KFa 1 1 
AMP, C, S, KFb 0 1 
AMP, TE, NA, S, KFb 0 3 
AMP, TE, NA, SXT, KFc 1 0 
AMP, NA, SXT, C, KFc 1 0 
AMP, NA, C, S, KFc 1 0 
IMP, CN, NA, SXT, S, KFb 0 1 
AMP, IMP, CN, C, S, KFc 1 0 
AMP, IMP, SXT, C, S, KFc 1 0 
AMP, NA, SXT, C, S, KFa 2 2 

aThe most common pattern of multiple-drug resistance among both water 
collections. Antibiotic resistance patterns specific of bUW and cSML isolates. 
AMP, ampicillin; KF, cephalothin; IMP, imipenem; TE, tetracycline; C, 
chloramphenicol; CN, gentamicin; NA, nalidixic acid; S, streptomycin; SXT, 
sulfamethoxazole/trimethoprim.  

 
 

5.4 Discussion 

 

We compared the persistence of antibiotic resistance among cultivable bacteria from 

the SML and UW in an estuarine system. We hypothesized that SML would be a reservoir 

of antibiotic resistance.  

Specifically we compared the prevalence of tetracycline-, ampicillin- and 

streptomycin-resistant bacteria between both water layers. These antibiotics have been 

used for long not only in human medicine but also in agriculture, aquaculture and 

veterinary (Chelossi et al., 2003). Accordingly resistance to these drugs is highly 

disseminated in several environments (Olaniran et al., 2009; Barkovskii & Bridges, 2011). 

Results obtained during this study showed significant differences between SML and UW in 

terms of prevalence of resistance to all tested antibiotics. Differences may arise from the 

fact that SML accumulates pollutants including antibiotics (Hermansson et al., 1987; 
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Walczak & Donderski, 2004) and antibiotic concentrations in the environment are the main 

factor contributing to the selection of resistant bacteria (Kümmerer, 2004). In addition to 

the selective pressure exerted by antibiotics themselves, other compounds such as heavy 

metals, disinfectants or pesticides also contribute to the maintenance of antibiotic 

resistance (Jones et al., 1991). SML has been described to accumulate nickel, copper, 

arsenic, chlorinated pesticides and polychlorinated biphenyls (Cuong et al., 2008; Wurl & 

Obbard, 2005). On the other hand producers of antimicrobial compounds have often been 

described among particle-attached bacteria rather than free-living bacteria (Hakvåg et al., 

2008; Wilson et al., 2010, 2011). Particle-attached bacteria may be enriched in SML due to 

accumulation of higher amounts of organic particles in this water layer (Cunliffe & 

Murrell, 2009). 

Besides determining the prevalence of antibiotic-resistant bacteria in both layers using 

antibiotic-supplemented agar, during this study we also compared antibiotic resistance 

profiles of isolates from SML and UW. Isolates were obtained in non-selective agar 

without antibiotic. No significant differences in terms of resistance profiles or prevalence 

of multiresistance were detected between SML and UW isolates. These apparently 

contradictory results are probably due to the fact that generally resistant bacteria were a 

minor component of the SML and UW bacterial communities preventing the detection of 

differences between culture collections. In fact antibiotic resistance levels among our 

bacterial collections were generally low and multiresistance was infrequent. For example 

members of the genus Psychrobacter were highly sensitive to all antibiotics tested. 

Psychrobacter was the most frequently retrieved genus representing almost 17% of the 

total number of isolates. Although other studies reported considerable higher resistance 

levels in estuarine bacteria (Zheng et al., 2011), those studies were either focused on 

resistant bacteria selected on antibiotic-supplemented agar (Evangelista-Barreto et al., 

2010) or on specific bacterial groups known for their high resistance levels to several 

antibiotics (Henriques et al., 2006c). When unbiased selections were conducted results 

were similar to the ones obtained during this study (Mudryk, 2004; Mudryk & 

Skorczewski, 2009).  

Comparative information on antibiotic resistance between SML and UW is still scarce. 

Even so, a few studies reported differences between SML and UW in terms of prevalence 
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of resistant bacteria (Hermansson et al., 1987; Jones et al., 1991). Those studies were also 

based on counting antibiotic-resistant bacteria in antibiotic-supplemented agar. 

In this study colonies were randomly selected from petri dishes, which may have 

excluded some of the less common members of the community. Even so this procedure 

was adopted since colony selection based on morphological traits commonly results in 

overrepresentation of these less prevalent members. Also the representativeness of our 

culture collection was improved by collecting a high number of samples and by using two 

different culture media.  

We assessed the presence and diversity of acquired ARGs commonly detected both in 

clinical and environmental isolates. As previously described antibiotic resistance 

phenotypes and genotypes may not match (Henriques et al., 2006c). Thus, we decided to 

screen for the presence of resistance genes in all the isolates independently of their 

resistance phenotypes. The presence of the antibiotic resistance genes in isolates with a 

susceptible phenotype is worth evaluating since in combination with other resistance 

mechanisms or in a different genomic context these genes may confer or potentiate 

resistance. 

Most of the times we failed to detect any of the inspected genes even in resistant 

isolates. For example the presence of the common acquired bla genes encoding beta-

lactamases was not demonstrated in any of the isolates, even when an ampicillin resistance 

phenotype was detected. Again, our results may be due to the fact that an unbiased 

selection was conducted. This strategy resulted in a collection of isolates belonging to a 

wide range of genera, for some of which antibiotic resistance mechanisms had never been 

characterized. These mechanisms may be intrinsic rather than the acquired ones inspected 

during this study. For example, trends of antibiotic resistance were essentially the same for 

the genera most commonly retrieved in our study and included high levels of resistance to 

ampicillin, cephalothin and streptomycin. Intrinsic antibiotic resistance mechanisms to β-

lactams have already been described such as the production of chromosomal-encoded β-

lactamases in Aeromonas, Pseudomonas, Acinetobacter, Vibrio, Stenotrophomonas or 

Shewanella (Livermore, 1995). Additionally Acinetobacter, Pseudomonas and Aeromonas 

are noted for their intrinsic resistance to antibiotics due to several other mechanisms such 

as the production of amynoglicoside-modifying enzymes, the diminished expression of 

outer membrane proteins and the over expression of efflux pumps (Bonomo & Szabo, 
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2006; Janda & Abbott, 2010). For these genera the combination of several resistance 

mechanisms often occurs leading to the emergence of multiresistance strains (Bonomo & 

Szabo, 2006; Evangelista-Barreto et al., 2010). In our study multiresistance was 

particularly associated to Pseudomonas and Aeromonas. 

Concerning tetracyclines, the genes tet(E) and tet(M) were detected in Aeromonas and 

Pseudomonas respectively. tet(E) has previously been described has the most frequent 

tetracycline resistance mechanism in Aeromonas (Henriques et al., 2008) and tet(M) is also 

common among Gram-negative isolates including Pseudomonas (Brown et al., 2008). 

The prevalence of integrons was also assessed and class 1 integrons were detected in 

2.11% of our isolates. This prevalence is comparable to what has been reported for 

estuarine bacteria from other geographical locations (Rosser & Young, 1999). All class 1 

integrons were detected in Aeromonas isolates (2 from SML and 1 from UW samples), 

predominantly carrying the aadA-type cassettes (aadA1, aadA13), conferring resistance to 

streptomycin. These cassettes are reported as the most frequent gene cassettes in bacterial 

isolates (Moura et al., 2009) and have been frequently detected in Aeromonas (Henriques 

et al., 2006c; Moura et al., 2007; Laroche et al., 2009). Results obtained during this study 

must be interpreted having in mind that only the culturable fraction of the bacterial 

community was considered. We are aware that only a minor fraction of the environmental 

bacterial community can be cultivated under laboratory conditions (Azevedo et al., 2012). 

However, the large majority of the studies on antibiotic resistance conducted so far are 

based on the characterization of pure cultures. The main reasons are related to the current 

limitations of culture-independent methodologies (Henriques et al., 2006b). On one hand 

fragments amplified from total DNA are not necessarily indicative of the presence of 

functional genes. On the other hand the hosts of those genes usually cannot be identified by 

culture-independent methods which present a severe limitation when studying antibiotic 

resistance. 

In summary, the prevalence of antibiotic-resistant bacteria was different between the 

SML and UW only when selection was conducted using antibiotic-supplemented agar. 

Even so these results suggest that SML conditions select for antibiotic resistance. The 

overall results also showed that, although antibiotic resistance occurs among estuarine 

bacteria, the resistance mechanisms are different from the most common acquired 

mechanisms, being probably predominantly intrinsic. Although we cannot exclude the 
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contribution of transferable genetic elements, our results suggest that SML primarily 

selects for intrinsic antibiotic-resistant. 



 

 

 

 

 

 

 

 

 

 

 

 

 

6. General discussion
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Bacterioneuston communities are poorly characterized especially in what concerns the 

spatial and temporal factors that might influence its phylogenetic diversity and the 

metabolic activities they exert (Stolle et al., 2010). 

Furthermore, studies comparing the bacterioneuston and bacterioplankton communities 

lack detailed information about the extent of diversity inside specific phylogenetic lineages 

that might highlight distinctive features of each community and at the same time, reveal to 

what extent the two compartments communicate, and what phenotypes and genotypes are 

shared. 

In general, comparative analyzes on the bacterioneuston and bacterioplankton 

composition is often based on the phylogenetic diversity of the total community and 

evidences that have been gathered so far delivered contradictory findings (Agogué et al., 

2005a; Franklin et al., 2005). 

The work presented in this thesis has definitely contributed to extend our knowledge on 

the structure and dynamics of bacterioneuston communities from an estuarine 

environment, comparing to the underlying bacterioplankton and establishing some 

relations with the local environmental characteristics.  

It is our conviction that this study filled some of the knowledge gaps in this field. For 

example, as the properties of SML may vary significantly along time and space (Peltzer et 

al., 1992; Santos et al., 2009), the temporal and spatial dynamics of bacterioneuston 

communities and specifically the temporal and spatial variation in terms of differences 

between bacterioneuston and bacterioplankton were evaluated. We followed changes on 

the structure and dynamics of the bacterioneuston and bacterioplankton communities in 

three geographical locations along Ria de Aveiro estuary (with different anthropogenic 

inputs) in four sampling dates, including spring, summer and autumn periods. Moreover, 

the first task of this research plan consisted on preliminary studies that allowed us to 

carefully assess to what extent spatial variability was observed, thus ensuring that the 

samples collected at each location were representative of each sampling site. For that, at 

each sampling site, samples were taken every 50 meters along a 200 meters transect.  

Furthermore, sampling was conducted at low and high tide and also during day (maximum 

light) and night (minimum light). Preliminary results based on fingerprinting analysis 

(DGGE) indicated that samples preferably grouped according to the sampling sites and that 

the bacterioplankton and bacterioneuston communities shared a high degree of homology 
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(data not shown). On the other hand the light regimens had a considerable influence in the 

structure of bacterioneuston. Regarding tidal regimens, all samples collected at low or high 

tides clustered separately. Thus, tidal regimens ought to be taken into account particularly 

in studies conducted in an estuarine environment, which is the case of the present study. 

Estuarine systems are strongly influenced by anthropogenic activities accumulating 

high levels of pollutants and often becoming eutrophicated (Keddy, 2000). A variety of 

compounds often accumulate in the SML compartment, thus gathering ideal conditions for 

the establishment of a distinct estuarine bacterioneuston community. However, estuarine 

systems are very dynamic and the accumulation of organic matter including pollutants can 

be strongly altered by spatial and temporal changes. Thus, at low tide, the lowest volume 

of water in the estuary would facilitate the concentration of organic matter, consequently 

influencing the establishment of a distinct estuarine bacterioneuston, making this moment 

the ideal for SML sampling.  

To the best of our knowledge, there are no other studies in this field that have 

considered these many aspects: the spatial and temporal dynamics, the tidal regimen, and 

the light regimen. Moreover, meteorological aspects such as wind speed and rainfall can 

strongly impact the formation of the SML and thus influence the obtained results when 

studying the bacterioneuston (Wurl et al., 2011). Hence, we were very cautious to avoid 

the influence of meteorological conditions: samples were always taken under a low wind 

speed (<4 m s-1) and mild weather (without rainfall). Furthermore, in each campaign we 

ensured that samples were taken from all sampling sites within 24 to48 hours to avoid the 

influence of temporal aspects. 

SML sampling devices must be carefully chosen and, if possible, more than one type 

should be used to minimise bias associated to each method (Agogué et al., 2004). In this 

specific study, given the high number of samples analysed, it was decided not to add 

samples obtained with another sampling device, thus avoiding increasing number of 

samples to non-manageable levels. After a revision of the available literature, we have 

chosen the sampling device that seemed to be the most suitable for our working conditions: 

the glass plate. As all SML samples were collected using always the same device, and this, 

in our opinion, represents an advantage in the sense that avoids biases introduced by 

sampling thus allowing some confidence in comparing results from different samples. 
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Furthermore, all samples were evaluated not only in terms of the total bacterial 

community (Chapter 3), but also focusing on the phylogenetic diversity of specific groups 

such as Pseudomonas, Aeromonas (Chapter 3) and Psychrobacter (Chapter 4) and 

functional diversity in terms of antibiotic-resistant bacteria in the SML and UW in Ria de 

Aveiro (Chapter 5). Again, to our knowledge this presents the broadest study ever 

conducted to analyse the bacterioneuston within the same aquatic system. 

Additionally, the same aquatic system has been analysed by other authors that 

performed comparative studies on specific features that were distinct between the 

bacterioneuston and bacterioplankton. The main findings of those studies are reported on 

the next lines: 

a) It has been hypothesized that, due to enrichment in organic matter and presence of a 

wide array of pollutants, higher rates of horizontal gene transfer could occur at the 

SML. To investigate this hypothesis Oliveira and coworkers analysed the presence 

and diversity of mobile genetic elements within the bacterioneuston and 

bacterioplankton communities from Ria de Aveiro (Oliveira et al., 2012). The 

authors captured novel plasmids conferring resistance to tetracycline and mercury, 

many of which were captured from the SML.  

b) Another critical aspect that may contribute to the establishment of a different 

bacterial community in the SML is the fact that this environment is subjected to 

stronger solar radiation. The resistance to ultra-violet radiation of SML and UW 

communities has been thoroughly evaluated in Ria de Aveiro (Santos et al., 

2011a,b; 2012).  

c) Finally the accumulation of pollutants in the SML may have also selected for 

phylogenetic groups able to degrade and consume these compounds. This was 

assessed by Coelho and coworkers in what concerns the capacity to degrade 

aromatic compounds (Coelho et al., 2010, 2011).  

The high amount of data collected and the inferences made from them, as well as the 

several aspects and issues considered in the studies cited above, make the aquatic system 

Ria de Aveiro as one of the most (if not the most) well studied environments in what 

concerns the characterization of the bacterioneuston and the comparison between 

bacterioneuston and bacterioplankton. Also the phylogeny of the bacterioplankton 

communities within Ria de Aveiro had previously been extensively characterised by using 
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culture-dependent and culture-independent approaches (Henriques et al., 2004; 2006a,b,c; 

2008). In summary, those studies have revealed that phylogenetic shifts within the 

bacterioplankton community occurred essentially between the brackish and freshwater 

sections in the estuary. Furthermore, seasonally driven changes in such bacterioplankton 

community were also registered. Moreover, antibiotic resistance within Ria de Aveiro 

bacterioplankton had been also investigated and results indicated the occurrence of a 

diversity of resistance mechanisms and molecular variants of genes conferring antibiotic 

resistance, which potentially classified the estuary as a natural reservoir of antibiotic 

resistance genes (Henriques et al., 2006b,c). 

Most molecular methods of microbiological analysis used in this thesis project have 

been previously validated by our research group on samples from the same estuary during 

the characterization of bacterioplankton community (Henriques et al., 2004; 2006a,b,c; 

2008). The combination of culture-dependent and culture-independent methodologies was 

considered successful in such studies in the sense that contributed to overcome the 

drawbacks commonly associated to each approach. Those methodologies have shown to be 

reliable for the simultaneous analysis of large numbers of samples and to monitor changes 

in bacterial community structure according to spatial and temporal factors. 

A strong reason for using both culture-dependent and culture-independent methods in 

this study is that most studies that have examined differences between SML and UW 

communities in the last decade were driven by the idea that molecular approaches are able 

to give a complete picture of the microbial composition in any environment and 

consequently, were limited to culture-independent approaches (Agogué et al., 2005a; 

Franklin et al., 2005; Cunliffe et al., 2009a).  

Culture-independent approaches have the advantage to provide a better picture of total 

bacterial community structure. In fact, 16S rDNA DGGE profiles revealed that differences 

between both communities remained relatively constant as previously reported (Cunliffe et 

al., 2008). Even so, our results showed that differences between both communities 

frequently vary according to spatial and temporal factors. On the other hand, the culture-

based approach led to the successful cultivation of a considerable diversity of heterotrophic 

bacteria. This community is expected to be of major importance in the SML due to the 

high amounts of organic matter ought to occur. By using a culture-dependent approach 

differences (although minor) between both communities were again highlighted. 
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The combination of culture-dependent and culture-independent methods was also very 

effective on the description of Psychrobacter phylogenetic diversity. A genus-specific-

DGGE-based method (designed during this study) and genus-specific cloning libraries for 

Psychrobacter were efficient in revealing that Psychrobacter populations are complex 

(high diversity) and very stable in all sites and sampling dates. This stability might indicate 

the presence of well-adapted phylotypes in this aquatic environment. The culture-

dependent approach contributed to the characterization of this diversity and also provided a 

Psychrobacter culture collection in which presumably new species are included. The 

characterization of these new taxa was already started and will soon be published. A 

possible drawback of this study was the lack of quantitative data on the abundance of 

Psychrobacter along the estuary. In future studies it is advisable to use for example 

quantitative PCR specific for Psychrobacter to assess the abundance of this genus in Ria 

de Aveiro and to correlate this abundance with environmental variables that might be 

contributing for the successful colonization of this temperate habitat by this cold-adapted 

genus.  

In terms of functional diversity, we intended to evaluate the contribution of the 

bacterioneuston community to the antibiotic resistance gene pool and antibiotic resistance 

dissemination. We hypothesize that under the conditions occurring at the SML (enrichment 

of pollutants and organic matter, the formation of a gelatinous film that probably supports 

a biofilm) horizontal gene transfer and the dissemination of antibiotic resistance is more 

plausible to occur than in underlying waters.  

We found a very low incidence of known antibiotic-resistance genes, when compared 

to what was previously reported for bacterioplankton communities (Henriques et al., 

2006c; 2008). We are aware that this “low incidence” might be associated to the culture-

dependent criteria applied in this work, which was non-antibiotic selective.  

On the other hand, this study was able to characterize the antibiotic resistance profile 

among a high diversity of phylogenetic groups present in the heterotrophic bacterial 

communities in Ria de Aveiro. This result opens new possibilities to characterise the 

mechanisms and genetic elements involved in antibiotic resistance in SML and UW 

communities. 

Moreover, further studies concerning antibiotic resistance should compare the particle-

attached and non-particle-attached bacterioneuston with bacterioplankton community. 
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According to Wilson et al. (2010) and Hakvåg et al. (2008) antagonistic activity have often 

been described among particle-attached bacteria, thus this aspect could highlight 

differences between both water layers.  

Question on whether bacterioneuston constitutes a distinct community or is closely 

related to bacterioplankton is far from being completely answered. However, our results 

definitely provide additional and consistent information regarding both microbial 

communities’ compositional structure and dynamics by combining culture-dependent and 

independent surveys. 

 

 

Summary of conclusions 

 

This study definitively contributed to clarify the similarity/divergence between the 

communities of bacterioneuston and bacterioplankton in Ria de Aveiro. Most of results and 

conclusions can be easily extrapolated to other aquatic systems, adding knowledge to a 

field that has been poorly explored. Specifically differences between SML and UW 

communities probably occur in most (if not all) the aquatic systems, although in some 

cases these differences are not pronounced. The fact that spatial and temporal factors 

influence comparative analysis between both bacterial communities is probably a global 

aspect, independently of the aquatic system being considered. Also, in terms of antibiotic 

resistance, the higher prevalence of antibiotic-resistant bacteria in the SML may also be a 

common feature, owing to the selective conditions in this layer. On the other hand, the 

specific phylogenetic groups enriched in the SML or the UW may be dependent on the 

specific conditions of each ecosystem. In fact environmental conditions such as salinity or 

temperature and anthropogenic pressures such as the presence of specific contaminants 

obviously determine the composition of SML and UW and the differences between these 

communities. 
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Results allowed stating the following conclusions: 

  

Spatial and temporal analysis of estuarine bacterioneuston. 

 

� DGGE profiles indicated that SML and UW communities are highly similar; 

however SML-specific phylotypes were identified. 

 

�  Most of the SML exclusive DGGE-bands were detected during day on the same 

sampling site, suggesting that differences between SML and UW communities are 

probably related to spatial and diel factors. 

 

� Structural and compositional differences between SML and UW aeromonads 

communities were not identified. 

 

� Compositional differences between both bacterial communities based on culture-

dependent survey were confined to a few genera overrepresented in UW samples (Kocuria, 

Agrococcus and Vibrio).  

 
� A cultivable operational taxonomic unit affiliated to Pseudomonas was consistently 

overrepresented in SML samples. 

 

Psychrobacter populations within Ria de Aveiro 

 

� The culture-dependent and culture-independent approaches were an asset to the 

description of the diversity of genus Psychrobacter 

 

� A collection of cultivable Psychrobacter isolates was obtained containing strains 

representing putative new species. The characterization of novel species is currently on-

going.  

 

� A surprisingly high diversity among Psychrobacter in Ria de Aveiro was found 

suggesting that this genus is well-adapted to this environment.  
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Antibiotics resistance in two water layers 

 

� A very low incidence of known antibiotic-resistance genes was found that might be 

associated to the culture-dependent criteria, which was non-antibiotic selective. 

 

� Higher prevalence of antibiotic-resistant bacteria was found in the SML suggesting 

that SML conditions select for antibiotic resistance.  

 

� Antibiotic resistance was uncommon among estuarine bacteria and the resistance 

mechanisms were probably predominantly intrinsic.  
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